Dumpleton
Software
Consulting
Pty Limited

OSE

Version 7.0pl5

Python Manual

19 January 2003

Copyright [1 2001-2003 Dumpleton Software Consulting Pty Limited
http://www.dscpl.com.au

Table of Contents

Table of Contents..........ceveeeeeeeeenee.. 3 Unique ldentifiers..........ccoveveeennnee. 22
_ Process ldentityccccoovvvreeeeennen. 23

Manual Overviewccccccuueee.e. 7
Event Framework....................... 25
Python Modules.............cccoceceeee. 9 Scheduling @Job ..ceeeeevereeeee 25
Module Descriptions....................... 10 Rea Time EVents........cocevvveveeenn, 28
Installation and Setup.............cooeuuen. 10 Destroying AQents............c.cooowwne... 29
Additional Information.................... 11 Alarmsand Timers.. oo 29
Logging FaCilitycovvrrveerreene. 13 Recurring ACtionS.........cccoceveveeennens 30
R Ty — 13 Socket Eve_:nts 31
Specifying aL.og File........oo.... 14 Program Signals........cccccceeeevennnnne 32
Specifying aL.og Channel 16 Program Shutdown............ccccceeuee.e. 33
Logging Python Exceptions............ 16 Service Agents........cceceeeeenee, 37
Exceptionsina Callback................. 17 Service Naming..........ccvevevererienens 38
Program Setup.........ooee.oerveerreeee. 19 ServiceAudience_ 39
Configuration Databae............... 19 Anonymous SEIVICE ... 39
Configuration File........ccccocvveenenee. 20 Serv!ce G“’Pps """"""""""""""""" 40
Naming Hierarchiesoooo....... 21 Serv!ce RegIStIY .. 40
Environment Variables.................... 21 Service ANNOUNCEMENS.................. 43
Group Announcements.................... 44

Table of Contents

Service Lookupcceeeveveeviieieenne 44 Handling Structured Types.............. 85
Service REPOrts........cccvevevvennnne, 47 Servlet Frameworkcccccue.... 87
Publishing Reports.........cccccovvveenee 48 Framework Overview..........cccc.c...... 87
Monitoring Reports...........cccecueeee. 48 The HTTP Daemon..........ccccccuueeee. 88
Lifetime of Reports........cccccovevueneee 50 TheFile Server......ooovvvveceieeenns 89
Identity of Subscribers.................... 52 Client Authorisation............cc.c....... 90
Existence of Publishers................... 54 User Authorisationcccccceeveeneee. 91
: HTTP Server Objects.........ccceouu.e. 91
Servi Ce_' REQUESES....oooovvveviinneisannss o7 The Error Serviet........coooveveeene. 92
Sending a REqUESE ... 57 TheRedirect Serviet ... 93
Handling a RESPONSE........covvvvvvvv 59 The Echo SErVIEt commmmvoooereeeeeeeeee.. 93
|dentifying 8 RESPONSE........ccvvvvvv 60 TheFileServiet oo 93
Detecting aFailure........cccccceenenee. 61 Logging of REQUESKS......vvvvvvvvvveeeo. 94
Lack of Response.........cccevevrunennee 63
Servicing aRequest...........cc............ 64 Servlet Objects........cccoevvvennennen 95
Generating aFailure........................ 65 Processing aRequest..........ccoeee.... 95
Delaying aResponse.........cccceeuee.. 66 Persistent Connections..................... 96
Identity of the Sender 68 Delaying aResponse..........ccccueun.e.. 97
Invalid Request Method 69 Destruction of Servlets.................... 98
Local Service Requests................... 69 Processing Content.........ccccccveveeennen. 99
The Form Servlet........ccovevivennennee. 100
Message EXCange................o....... 1 QowHTTP Clients .. 101
Exchange Initidisation.................... 72
Service Availability...........cccucueene, 72 Servlet Plugins.........ccccoeevnene, 105
Connection Announcements............ 74 Python Plugin........cccceeveiienene. 105
Authorisation of Clients.................. 75 Module Caching........ccccccveveveenneee. 107
Distributed Exchange Server........... 75 WritingaPlugin........ccccoeevveeennee. 108
Multiple Exchange Groups.............. 76 Plugin Aliasing........cccccceeeeeeeeenennn 108
Scalability of the Framework......... & Remote ACCESS.......cccveeeerveeeennne. 111
Message Encoding...........ccoee...... 79 The RPC Gatewayccceue.... 112
Supported Data Types........cceeeneee. 80 The Client Application.................. 113
Mapping of Scalar Types................ 81 Restricting Client Access.............. 113
User Defined TYpesS.....cccccveevereeenee 83 Duplicate Services.........cceveenee. 114
Adding New Mappings................... 83 User Defined Types.......ccceeeveeneee. 115

Managing User Sessions
The XML-RPC Gateway

116
118

The SOAP Gateway
Using Multiple Gateways

Table of Contents

M anual Overview

Thismanual covers the Python wrappers around the OSE C++ classlibrary. The wrappers make avail-
able functionality related to the logging system, the real time events system, the service agent frame-
work for creating distributed applications, the HTTP servlet framework and the RPC over HTTP

interfaces.

Python Modules

Liststhe available Python modules and their pur-
pose. Includes brief details regarding installation
and setup of the users environment.

Logging Facility

Describesthe message logging facility, including
how to direct messages to a specific log channdl,
how to log messages to afile or to process them
within the actual application.

Program Setup

Describes the interface to the configuration data-
base, user environment and other process infor-
mation.

Event Framework

Describes the interface to the event system, how
to schedule jobs and setup callbacks in response
to real time events such astimers, signals and
socket activity.

browse.php?group=python-manual&entry=modules.htm
browse.php?group=python-manual&entry=logger.htm
browse.php?group=python-manual&entry=events.htm
browse.php?group=python-manual&entry=program.htm

Manual Overview

Service Agents

Describes how to create service agents, add them
to groups, subscribe to announcements regarding
specific services or membership of specific serv-
ice groups.

Service Reports

Describes how to subscribe to reports published
by specific services. le., describes the publish/
subscribe functionality provided by the service
agent framework.

Service Requests

Describes how to send requests to remote or
local service agents and how to handle any
response or error which results. le., describes the
messaging or request/reply functionality of the
service agent framework.

Message Exchange

Describes how to connect up processesto form a
distributed application, including a decentralised
message exchange and exchange groups.

Message Encoding

Describes the Python types which can be used in
messages and how this can be extended to incor-
porate new scalar data types.

Servlet Framework

Describes the HT TP daemon and servlet frame-
work, including the predefined servlets and how
to create customised HTTP server objects.

Servlet Objects

Describes how to create new servlet objects
including how to handle forms, client congestion
and delayed responses.

Servlet Plugins

Describes how to create servlet plugins and how
to use the Python plugin to dynamically load
servlets at runtime from the file system.

Remote Access

Describesthe RPC over HTTP interfacesinto the
service agent framework, including support for
NET-RPC, XML-RPC and SOAP protocols.

browse.php?group=python-manual&entry=service.htm
browse.php?group=python-manual&entry=reports.htm
browse.php?group=python-manual&entry=requests.htm
browse.php?group=python-manual&entry=exchange.htm
browse.php?group=python-manual&entry=encoding.htm
browse.php?group=python-manual&entry=daemon.htm
browse.php?group=python-manual&entry=remote.htm
browse.php?group=python-manual&entry=servlets.htm
browse.php?group=python-manual&entry=plugins.htm

Python Modules

OSE includes a number of Python modules. The main moduleis awrapper around functionality pro-
vided inthe OSE C++ classlibrary. Those parts of the OSE C++ classlibrary for which a Python wrap-
per are provided are the logging system, the real time events system, the service agent framework for
creating distributed applications and the HTTP servlet framework.

Additional modules provide access to the OSE service agent framework using an RPC over HTTP pro-
tocol called NET-RPC as well asthe XML-RPC and SOAP protocol. Note that the XML-RPC and
SOAP protocols come with restrictions deriving from problemsin the respective protocols and the
NET-RPC protocol provides the best integration.

Because interfaces are provided for the OSE service agent framework in both C++ and Python, an ap-
plication may be spread across multiple processes and consist of processeswritten using either C++ or
Python code. Using shared libraries and dynamic loading, C or C++ code could aso be loaded into
Python to perform some functionsif desired.

Overall, the Python wrappers provide an interface to the functionality of the OSE C++ class library
whichiseaser to usethanif the C++ classlibrary were used directly. This makesthe Python wrappers
ideal for building up the overall structure of adistributed system, with C++ code being used only when
necessary.

Python Modules

Module Descriptions

The Python modules, their names and their purpose are described below.

Module Purpose
net svc Thisis the main module and provides wrappers around the
functionality of the OSE C++ class library. It includes all that
isrequired for building distributed applications using the
service agent framework.
netrpc This module provides a client implementation of the RPC

over HTTP protocol implemented by OSE called NET-RPC.

net svc. xm r pc

This module includes the XML-RPC gateway for OSE. Any
server code isthe same as for when the NET-RPC protocol is
used. The only differenceis which gateway you instantiate.

netrpc. xm rpc

This module provides a client implementation of the XML-
RPC protocol. The module is interface compatible with
the'net r pc" module.

net svc. soap

This module includes the SOAP gateway for OSE. Any
server code isthe same as for when the NET-RPC protocol is
used. The only differenceis which gateway you instantiate.

net rpc. soap

This module provides a client implementation of the SOAP
protocol. The module isinterface compatible with
the'net r pc" module.

Installation and Setup

The"net svc" module requiresthe main OSE C++ classlibrary to beinstalled, as well as the Python
extension library. Theversion of "makei t " installed when OSE isinstalled needsto be run in the

"pyt hon" subdirectory of the OSE source code. Thisfinal step will install the two Python modules,
adynamically loadable modulewhich dragsin the OSE C++ classlibrariesand a GUI based debugger
for the service agent framework called "spyon". The exact steps which need to be followed are given

inthe"l NSTALL" filein the OSE source code.

When the Python modules are installed, they are not installed into your Python installation, but into
the sameareathat OSE isinstalled. In order that Python can find the modules, you will need to set your
PYTHONPATH environment variable to include the appropriate library directory in the OSE installa-

tion. For OSE 7.0, if installed into its standard location, the directory will be:

[usr/local/ose/7.0/1ib/python

10

Additional Information

An OSE installation supports libraries for different architectures. In order that the shared libraries for
your specific platform can be found by the Python module, you should ensure that the OSE_HOST var-
iableis set to the same value it was set to when OSE was installed. For example:

OSE_HOST=X86_ L1 NUX

If you want to be ableto runthe"spyon" debugger, your PATH environment variable should include
the OSE bin directory. For OSE 7.0, if installed into its standard |ocation, the directory will be:

/usr/local/ose/7.0/bin

If you want to be able to build up aversion of the Python wrappers with aDLL for Win32, you have
two choices. Thefirst requires you to have accessto either the Cygnus Win32 toolkit or MK S toolkit,
and the Microsoft C++ compiler. In this case the normal build procedure for OSE is followed. If you
only have accessto the Microsoft C++ compiler, anative makefile is provided with the source codein
the"wi n32" directory. Y ou should follow the instructions contained in that directory.

Note that if you wish to use either the SOAP client or SOAP gateway, you will need to separately ob-
tain and install the "ZSI" package from the "pywebsvcs' project on SourceForge. The project site ad-
dressis "http://sourceforge.net/projects/pywebsvcs’. Y ou must have version 1.2 RC2 or later of the
ZSl package.

Additional Information

Asthe main Python moduleis awrapper around functionality provided in the OSE C++ classlibraries,
it may be worthwhile to also consult the manual pages for the corresponding classesin the C++ class
library and the general C++ class library manual. The behaviour of some featuresis controlled using
environment variables and not all of these may be mentioned in the manual for the Python modules.

11

http://sourceforge.net/projects/pywebsvcs

Python Modules

12

L ogging Facility

Thelogging facility provides you with amechanism for generating and capturing messages generated
by your application. These can be automatically saved to alog file, or intercepted and dealt with in

some other way. The majority of functionality for thisfeatureis provided by the OTC_Logger class
in the OSE C++ classlibrary.

Some of the features of the logging facility are optional and controlled viaenvironment variables. Y ou
should consult the manual page for the OTC_Logger class and the general OSE C++ class library
manual as anumber of these features will not be described here or covered only briefly.

L ogging a M essage

The logging facility provides you with the ability to log a message string with a specified priority or
level assigned to it. Thelevel isanalogousto that used by the UNIX function called "sysl og() ".

Level Usage
LOG_EMERGENCY A panic condition.
LOG_ALERT A condition that should be corrected immediately,
such as a corrupted system database.
LOG CRI Tl CAL Critical conditions, such as hard device errors.
LOG_ERROR Errors.
LOG_WARNI NG Warning messages.

13

Logging Facility

Level Usage
LOG_NOTI CE Conditions that are not error conditions, but that
may require specia handling.
LOG | NFO Informational messages.
LOG_DEBUG Message that contain information normally of use
only when debugging a program.

Tolog amessage, ahandleto an instance of the Logger classisacquired andthe"not i f y() " mem-
ber function is called.

i mport netsvc
| ogger = netsvc. Logger ()
| ogger. notify(netsvc. LOG DEBUG "nessage")

The format of amessage when displayed will be:
DEBUG. nessage

The string beforethe ": " corresponds to the level assigned to the message. The remainder of theline
after the": " isthe actual message. If you wish to have the time and process ID appear in the prefix,
call the"enabl eLongFor mat () " member function. Whether the longer form of prefix is enabled
can be queried using the "l ongFor mat Enabl ed() " member function. It can be disabled using the
"di sabl eLongFor mat () " member function.

By default, messageswill appear on the standard error output. If you wish to disable the display of mes-
sagesonto the standard error output, call the"di sabl eSt der r Qut put () " member function. Con-
versely, the "enabl eSt der r Qut put () " member function can be called to enable display of
messages onto the standard error output if previoudly disabled. Whether messages are currently being
displayed onto the standard error output can be queried by calling the member function "st der -

r Qut put Enabl ed() ".

Specifyinga L og File

At any time, messages can be captured into asingle file by specifying the name of alog file using the
member function"set LogFi | e() ". If alogfileis currently in use, the name of thelog file can be
gueried using the "l ogFi | e() " member function.

| ogger. setLogFil e("/var/tnp/application.log")

14

Specifying a Log File

The string used to specify the name of alog file may incorporate the following specia tags.

Teg Purpose

% Will encode the hostname of the machine into the name of the log file.

% Will encode the process ID into the name of the log file.

%Y Will encode the current year as 4 digits into the name of the log file.

%y Will encode the current year as 2 digitsinto the name of the log file.

%m Will encode the current month of the year as a zero padded 2 digit
number into the name of thelog file.

%l Will encode the current day of month asa zero padded 2 digit number
into the name of the log file.

When the tags corresponding to dates are used, a new log file will automatically be created when the
value corresponding to a date component changes. The following will for example result in anew log
file being created each day.

| ogger. setLogFil e("/var/tnp/application-%y-%n %l.| og")

Note that older log fileswill not be removed automatically, so some other mechanism such asacron
job will need to be employed to remove them.

The name of alog file can also be set using the OTCLI B_LOGFI LE environment variable instead of
caling"set LogFi | e()". Similarly, output to the standard error output can be disabled using the
OTCLI B_NOLOGSTDERR environment variable and the inclusion of the time and the process ID in
the message prefix enabled using the OTCLI B_L OGL ONGFORMAT environment variable. If used,
these environment variables must be set before the application isrun or at least beforethe"net svc”
module isimported for the first time.

i mport os
os. putenv("OTCLI B_LOGFI LE", "/ var/t np/ appl i cati on- %r- %m %d. | og")
i mport netsvc

When an application first attemptsto open alog file, if it already existsit will be truncated. If you do
not want the log file truncated, but want messages to be appended to an existing log file, the

OTCLI B_APPENDLOGFI LE environment variable must be set. Again, this needsto be set prior to the
application being run or at least before the"net svc" module isimported for the first time.

Note that if any of these environment variables are used, but calls are subsequently made to the corre-
sponding member functions of the Logger class from within the application, the values of the envi-
ronment variables will effectively be overridden from that point onwards.

15

Logging Facility

Specifying a Log Channel

When logging amessage, alog channel may also be specified. If the name of alog channel starts with
acharacter other than an alphanumeric character, the message will not be displayed on the standard
error output or appear in thelog file. If it isdisplayed or captured in the log file, the name of the log
channel does not appear anywhere in the message. The intent of the log channel isto allow one part of
an application to capture specific messages produced by another part of the application and deal with
them in aspecia way.

Tolog amessage against aspecific log channel, the member function"not i f yChannel () " isused.
The name of the log channel is supplied asthe first argument.

| ogger. notifyChannel ("VI SI BLE", net svc. LOG _DEBUG, "nessage")
| ogger. noti fyChannel ("#HI DDEN", net svc. LOG _DEBUG, " nmessage")

Messages logged against a specific log channel, can be captured by calling the member function
"noni t or Channel ()", supplying the name of the log channel and a callback function.

def cal |l back(channel,|evel, nessage):
print (channel,|evel, message)

| ogger. moni t or Channel (" #Hl DDEN', cal | back)

The message supplied to the callback function is the original message and does not contain the prefix
describing the priority or level assigned to the message, nor does it contain any details relating to the
current time or process ID. If you are going to subsequently log the message to afile, you would need
to add these details yoursalf if you require them.

Only one callback can be associated with a particular log channel. If multiple callbacks are required
for a particular log channel, separate instances of the Logger class should be used. To stop monitor-
ing a specific log channel, the member function "noni t or Channel () " iscalled again but with
"None" supplied in place of the callback function.

If the callback function was a member of aclass, it isimportant to deregister the callback, else arefer-
ence to the instance of the class will be maintained and it may not get deleted. Y ou can also deregister
all of the callbacks associated with a particular instance of the Logger class by calling the member
function"dest r oyRef er ences() ". Thiswould be necessary if the class containing the callbacks
also held areference to the instance of the Logger class. In thiscase, acircular reference would exist
and neither object would ever be destroyed.

L ogging Python Exceptions

To make the task of logging details of a Python exception easier, the "l ogExcept i on() " function
isprovided by the"net svc" module. This function should only be called from within the context of
aPython "except " clause. The information logged is similar to that displayed by Python when an
exception is not caught and includes details of the exception and a stack trace.

16

Exceptions in a Callback

try:
function()

except SystenkExit:
raise

except:
net svc. | ogExcepti on()
sys.exit()

The details of the exception are logged with level "LOG_ERROR" and a specific log channel is not
specified. If you wanted to log the details of the exception to a specific log channel, or vary the level,
you canusethe"excepti onDet ai | s() " function of the"net svc" moduleto obtain the samein-
formation that would belogged by the"l ogExcept i on() " function andthencall the"noti fy()"
member function of an instance of the Logger class yourself.

try:
function()
except SystenkExit:
rai se
except:
details = netsvc. exceptionDetail s()
| ogger. notifyChannel ("WARNI NG', net svc. LOG_ WARNI NG, det ai | s)
pass

If you don’t want the stack trace and only want the description of the exception, use the function "ex-
ceptionDescri ption()"instead. Theresult of calling either of these functions need not be used
with the logger, but could be displayed using any other available mechanism as well.

Notethat the"excepti onDet ai | s()" and"excepti onDescri ption() " functionsare also
availableinthe "net r pc" moduleif you are using that in a standal one client application.

Exceptionsin a Callback

Whenever acallback is executed, it occurs as aresult of acal from C++ code into Python code. Be-
cause of the mix of C++ code and Python code, if an exception occurs within the callback function,
Python can’t by itself properly shutdown the application. Thisis further complicated by the fact that a
callback can be called within the context of a callback from the event dispatcher.

Asaconsequence, when any callback into Python code from C++ occurs, if a Python exception occurs
and the callback itself doesn’t catch it and deal withit, it will be caught with the details of the exception
being logged. The event dispatcher will then be stopped if it isrunning and the "Syst enExi t " ex-
ception raised in order to prevent Python from running any further code. The outcome is the same as
when only Python code is being used, except that the details of the exception are displayed using the
logging facility rather than being dumped directly onto the standard error outpui.

17

Logging Facility

18

Program Setup

AsPython is an interpreted language, configuration of an application can be carried out by editing the
actual scripts. In some circumstances however, it isstill easier or more practical to rely upon a config-
uration database or environment variables. When using OSE thisis especialy the case, as an applica-
tion can be amix of C++ and Python code and configuration datamay need to be accessible from code
written in both languages.

To support thisthe Python wrappers provide an interface to the configuration database of the OSE C++
classlibrary. The corresponding class in the OSE C++ class library which provides this functionality
isthe OTC_Pr ogr amclass. Not al functionality of this classis mirrored in the Python interface as
Python has its own way of doing most of what is provided by this class. Accessis however provided
to aspects of the configuration database and environment variable database. The functionality for gen-
erating unique identifiersis also exposed.

Configuration Database

The configuration database is an in memory database. The database may be populated by calls from
within the application, or by loading in a configuration file. The configuration database may also be
saved to afile. In essence, the configuration database is not much more than a dictionary mapping
names to values.

Toinitially load the configuration database from afile, the"l oadConfi g() " functionisused. A sin-
gle configuration item may be explicitly merged into the configuration database using the

"mer geConf i g() " function. A query can subsequently be made against the configuration database
using the "l ookupConfi g() " function. If no match isfound in the configuration database for the
item in question, the value None isreturned.

19

Program Setup

i mport netsvc
i mport os

net svc. | oadConfi g("dat abase. cfg")
net svc. mer geConfi g(" PWD", os. get cwd())

print netsvc. | ookupConfig("PWD")

A single configuration item can be removed from the database using the"r enmoveConf i g() " func-
tion. The configuration database can be completely emptied using the function "r enoveAl | Con-
fig()". Thecontents of the configuration database can be saved to afile using the

"saveConfi g() " function.

net svc. renmoveConfi g(" PWD")
net svc. saveConfi g("dat abase. cfg")

Configuration File

The only real restrictionsin regard to naming is that the colon character should not be used anywhere
in a name, a name should not being with an exclamation mark and whitespace should not be used at
the start or end of aname. The colon character cannot be used asit used in a configuration file to sep-
arate the name from the value. A leading exclamation mark should not be used as it is used to denote
acomment.

If these characters are used in aname and the configuration database is saved to afile, the resultswhen
that configuration fileisread back in will not be the same. The only other specia character when used
in aconfiguration file is aback sash, which when used at the end of the line, indicates the following
lineis part of the same value. Note that the leading whitespace and the whitespace either side of the
colon will beignored when the configuration fileisread in.

I comment

singl e-1ine-value : val ue

mul ti-line-value : val ue\
val ue

When reading in aconfiguration fileusing "l oadConf i g() ", an exception israised only if thefile
doesn’'t exist or thefile couldn’t be opened. If there areno errorsin thefile, the value None isreturned.
If there are errorsin thefile, astring is returned which contains details of the errors and what action
has been taken. By default, the detail s of the errors are also output viathe logging system on the default
log channel.

If details of any errors should be output on a specific log channel, an optional second argument can be
supplied to the "l oadConf i g() " function giving the name of the log channel. If the value None is
supplied in place of the name of thelog channel, the details of the errorswill not be output viathe log-
ger at all. Thevalue None could be used if you wish to amend the details of the errors before they are
logged.

20

Naming Hierarchies

file = "database. cfg"
errors = netsvc.l oadConfig(file, None)
if errors:
errors = "Error reading %\n%" % (‘'file',errors)

net svc. Logger (). noti fy(netsvc. LOG DEBUG, errors)

Naming Hierarchies

If anaming hierarchy isrequired, the componentsof the hierarchy within the name should be separated
by using a period.

conpi |l er. preprocessor. debug-level : 0
conpi |l er. parser.debug-level : 1

conpi | er. code- gener at or. debug-level : 0
conpi | er. assenbl er. debug-level : 0

In general, the purpose of using anaming hierarchy isto associate properties with the same name with
different parts of an application, or with different instances of some object. To cater for default values,
rather than enumerating all possible objects, awildcard can be specified in place of asingle component
in anaming hierarchy. This says to match any component name in this position. Only those items
which need to be different then need to be explicitly specified.

conpi |l er.*. debug-level : O
conpi |l er. parser.debug-level : 1

When alookup is made against the database, acheck isfirst madefor any entry which matches exactly
the name of interest. If this name is not present, a search isthen made of the entries containing awild-
card. If amatch isfound, the value associated with the wildcard entry will be returned. If there are
multiple wildcard entries which match alookup against the configuration database, that which has the
longest leading exact match will be used.

Environment Variables

In addition to the configuration database, an interfaceisalso provided to the standard operating system
environment variables. Python does already provide aninterfacefor this, however the Python interface
does have afew quirks which can sometimes make it less than useful.

One problem with the standard Python interfaceis that when"os. put env() " isused to set an envi-
ronment variable, that variable is not then visible using "os. get env() ". Thisis because

"0s. getenv() " uses"os. envi ron", which isacopy of the environment which is populated at
startup and any changes to environment variables are not reflected in that copy.

As such, although changesto the environment will be seen by subprocesses, they will not bevisiblein
the same process. This means that an environment variable can't at the same time be used to transfer
information to a different part of the application.

21

Program Setup

To lookup the value of an environment variablethe function "l ookupEnvi ron() " isused. If anew
environment variable needs to be set, or an existing value changed, the function "nmer geEnvi -
ron() " isused. Any changesto the environment variableswill be visibleimmediately, but thereisno
way to get alist of all environment variables which are set. When alookup is made but no such envi-
ronment variable exists, the value None is returned.

net svc. mer geEnvi ron(" PWD', os. get cwd())
print netsvc. | ookupEnviron("PW")

In addition to these functions, the function "expandEnvi r on() " isprovided. Thisfunction accepts
astring and replaces any reference to an environment variable specified using Bourne shell syntax,
with that environment variables actual value. Theintent in providing thisfunctionisthat it can be used
in conjunction with the configuration database, allowing configuration items to refer to environment
variables.

application.log-files : ${HOVE}/| ogs

Note that the expansion isn’t automatic when alookup is made against the configuration database. The
application code will have to explicitly expand the value obtained form the configuration database.

val ue = netsvc. | ookupConfig("application.log-files")
directory = netsvc. expandEnvi ron(val ue)

Unique ldentifiers

In many applications, it is often useful to be able to create abstract identifiers to uniquely identify ob-
jects or resources. These might be used to identify user sessionsin aweb based application, specific
requests in a distributed messaging system, or even the particular service agent which arequestin a
distributed messaging system is targeted at.

Such identifiers may only need to be unique within the context of the lifetime of the application, or
possibly may need to be globally unique. In the case of thelatter, to be rigourous this would normally
require an external database to be maintained which tracks what identifiers have been used. In most
cases however, it is not necessary to go to that extent and a simplistic means can be used to generate a
psuedo unique identifier which is sufficient.

To generate such identifiersthe function "uni quel d() " is provided. The function can provide iden-
tifiersin either a short or long format. In the short format, the identifier contains components which
identify the host on which the processisrunning, the processid and anincremental counter. Inthelong
format, time values are also included which tie the identifier to an instant in time.
idi
i d2

net svc. uni quel d(net svc. | D_SHORT FORNAT)
net svc. uni quel d(net svc. | D_LONG_FORMAT)

If you wish to incorporate your own prefix into the identifier, an optional second argument can be sup-
plied to the "uni quel d() " function.

22

Process Identity

i dl = netsvc.uniquel d(netsvc. | D SHORT_ FORMAT, "$SI D?")

The short format identifier is suitable for use within the context of a single process. Duplicates would
only be encounterd if the incremental count of the number of identifiers exceeded what can be stored
within a32 bit integer value. If thiswereto occur, the counter would wrap around to zero and conflicts
might thus arise if the existing identifier were still active.

The short format identifier could also be used within the context of a constrained distributed applica-
tion provided that the nature of the application is such that knowlege of what the identifier isassociated
with is always discarded when the process the identifier is bound to is destroyed. This would be nec-
essary, as theidentifier could be reused if the process id was reused at some latter point.

If abetter gaurantee of uniqueness over timeis required, the long format identifier should be used. In
this case, the identifier also recordsthe time at which thefirst identifier was generated by the process,
aswell as atime delta as to when that particular identifier was generated. Incorporation of time infor-
mation avoids problems with the incremental counter overflowing and reuse of the same processid at
alatter point in time.

Process | dentity

A further feature which isuseful in distributed applicationsisaway of identifying specific processes.
Such an identifier can be generated by combining the name of the host and the processid into asingle
string. To facilitate this, the function "pr ocessl denti t y() " isprovided.

identity = netsvc.processldentity()

23

Program Setup

24

Event Framework

The main support for concurrency in the OSE C++ class libraries comes in the form of a mechanism
for building event driven systems. Thisis based around a central job queue and a dispatcher, which
takes successive jobs from the queue and executes them. To support real time systems, there also exist
anumber of event sourceswhich will schedule jobsto trigger an agent to be notified when an event of
interest occurs. The major event sourcesinclude timers, signals and the availability of datafor reading
on a socket.

The major classesin the OSE C++ class library involved in providing this functionality are the
OTC_Di spat cher,OTC_EVAgent and OTC_Job classes, plusthevarious event classesrelated to
the event sources. In the C++ implementation, communication of eventsis mainly performed by pass-
ing around event objects and having a single event handler method in an agent to deal with them. In
the Python implementation, separate callback functions can be registered by an agent against each
event of interest.

Note that only the mgjor features of the C++ implementation are reflected in the Python interface. Py-
thon does not provide ameans of creating your own event types or event sources. A Python agent is
also not able to process any events except those from the major event sources.

Scheduling a Job

Scheduling of jobs comesin the form of registering a callback function with the dispatcher for execu-
tion. A job may be scheduled asapriority job, astandard job, or anidlejob. Thetype of job determines
wherein the order of existing jobs, anew job will be placed. Any priority jobs are executed before a
standard job is processed. When there are no priority jobs or standard jobsremaining, any pending idle

25

Event Framework

jobswill bereclassified as standard jobs and subsequently executed. When scheduling ajob, if jobs of
the same type already exist, the new job will be placed at the end of the list of jobs of the same type.

To schedule ajob the dispatcher member function"schedul e() " must becalled, supplying the call-
back function and the type of job. To set the dispatcher running, the member function"r un() " is
caled. If the only feature of the event system which isused is that of scheduling jobs, the"r un(’) "
function will return when there are no morejobsto execute. A job may prematurely stop the dispatcher
by calling the"st op() " member function. If a callback raises an exception which is not caught and
processed within the callback itself, the detail s of the exception will be logged, the dispatcher stopped
and Python exited immediately.

def cal | back(nmessage="hi"):
print message

di spat cher = netsvc. Di spat cher ()

di spat cher. schedul e(cal | back, net svc. | DLE_JOB)

di spat cher. schedul e(cal | back, net svc. STANDARD_JOB)
di spat cher. schedul e(cal | back, net svc. PRI ORI TY_JOB)
di spat cher.run()

The callback supplied when scheduling ajob can be anormal function or amember function associated
with an instance of aclass. If acallback function is scheduled directly with the dispatcher in thisway,
it will be called with no arguments and cannot be cancelled once scheduled.

If it is necessary to pass arguments to a callback function, an instance of the Job class must be used
in place of the actual callback function. The Job classwill hold areference to the real callback func-
tion as well as the arguments. When the job is executed it will call the callback function with the sup-
plied arguments.

job = netsvc. Job(call back, ("bye",))
di spat cher. schedul e(j ob, netsvc. | DLE_JOB)

In addition to providing ameans of supplying argumentsto acallback function, the Job classprovides
ameans of cancelling execution of a callback function. In order to do this, areference to the instance
of the Job class should be kept. If it issubsequently necessary to cancel execution of the callback prior
to it having being called, the"cancel () " member function of the Job class should be called.

job = None

def call backl():
print "hi"
j ob. cancel ()

def call back2():
print "hi"

di spat cher. schedul e(cal | back1, net svc. PRI ORI TY_JOB)
job = netsvc. Job(call back?2)
di spat cher. schedul e(j ob, net svc. STANDARD JOB)

26

Scheduling a Job

All that is occuring hereisthat whenthe"cancel () " member functioniscalled, aflag is set. When
thejob is executed it will note that the flag is set and will not execute the callback function. If the call-
back functionisamember function of aclass, it isimportant to ensurethat any reference to theinstance
of the Job classis destroyed when no longer required. If thisis not done and the referenceisamember
variable of the same class the callback function isamember of, acircular reference will exist and that
instance of the class will not be able to be destroyed.

Any arguments to be passed to the callback function would by default be supplied when the instance
of the Job classis created. If it is necessary to generate an instance of the Job class such that it can
be passed to another part of the program, but the arguments to the callback function are not known at
that time, it isinstead possible to supply the arguments at the time the job is scheduled. Thisis done
by usingthe"schedul e() " member function of the Job classrather than that of the dispatcher. Any
arguments supplied in thisway will override those provided when the instance of the Job classiscre-
ated.

job = None
def cal |l backl(nmessage):

print nmessage

j ob. schedul e(net svc. STANDARD JOB, ("override",))
def cal | back2(message)

print message

job = netsvc.Job(call backl, ("default",))
j ob. schedul e(net svc. STANDARD JOB)
job = netsvc. Job(cal |l back?2)

Thiswould allow for instance a class which accepts callback registrations to return areferenceto a
Job class which will later be used to schedule the callback with an as yet undetermined set of argu-
ments. The client who registered the callback could however cancel execution of the callback before
itiscalled.

Once"cancel () " has been called on an instance of aJob class, whether or not it has already been
scheduled, the callback function will never be executed. To reset the flag which makes the callback
function runnable, the"r eset () " member function should be called. To determineif the an instance
of the Job classis still in arunnable state, a truth test can be performed on it.

if job:

job wasn't cancelled

j ob. schedul e(net svc. STANDARD JOB)
el se:

job was cancel |l ed

pass

If you wish to use the Job class separate to the dispatcher, you can trigger execution of the callback
function by calling the "execut e() " member function. If any arguments are supplied to the "exe-

27

Event Framework

cut e() " member function, these will override any which may have been supplied when that instance
of the Job class was created.

Real Time Events

The Python interface providesthe ability to register interest in anumber of real time events. Theseare
program shutdown, one off alarms or actions, recurring actions, timers, signals and data activity on
sockets. That an event of interest has occurred is notified by execution of acallback supplied at the
time that interest in an event is registered.

In the C++ implementation, the methods for expressing interest in a specific type of event were spread
across numerous classes. In the Python interface, all functionsfor registration of interest in eventsare
contained within the Agent base class. Any object interested in receiving notification of an event oc-
curring is expected to derive from the Agent class.

The simplest type of notification isn't really areal time event at all, but a variation on the concept of
scheduling ajob with the dispatcher. Instead of calling the "schedul e() " member function of the
dispatcher, the "schedul eAct i on() " member function of the Agent baseclassis called.

The major difference between using "schedul eActi on() " and "schedul e() " isthat when us-
ing "schedul eActi on() " you can optionally supply an additional string argument to be used as
an identifier for that job. Thisidentifier can be used to cancel the job before it actually gets executed
by caling"cancel Acti on() ". If the callback funcion accepts asingle argument, the identifier will
also be passed to the callback function as argument. Theidentifier can thus be used to distinguish be-
tween different jobs calling the same callback function. If an identifier is not explicitly provided, a
unique internal identifier will be created. Whether or not the identifier is set explicitly or created inter-
naly, the identifier used is returned as the result of the"schedul eAct i on() " method.

cl ass Obj ect (netsvc. Agent):

def __init_ (self):

sel f.schedul eAction(sel f.call backl, netsvc. PRI ORI TY_JOB)
def call backl(self):

sel f.schedul eAction(sel f.call back2, netsvc. | DLE JOB, "hi ")

sel f.schedul eAction(sel f.cal |l back2, netsvc.|DLE_JOB, "bye")
def call back2(sel f, name):

print nane

if nane == "hi":

sel f.cancel Acti on("bye")

di spat cher = netsvc. Di spat cher ()
obj ect = Object()
di spat cher.run()

When using the Agent class, you still need to run the dispatcher. Y ou do not need to schedule any
jobsdirectly with the dispactcher, but any initial agents need to be created prior to the dispatcher being
run. Notethat in scheduling ajob with aparticular identifier, any job aready scheduled with that agent

28

Destroying Agents

using the same identifier will first be cancelled. If you want to cancel al jobs scheduled using the
"schedul eAct i on() " member function you should call the"cancel Al | Acti ons() " member
function.

Destroying Agents

Ensuring that any outstanding job is cancelled, or deregistering interest in any event source, isimpor-
tant if you are endeavouring to destroy an agent object. If registrations are not cancelled, acircular ref-
erence will exist between data held by the instance of the Agent base class and the derived object.
Such circular references defeat the Python reference counting mechanism, meaning that the object may
never be destroyed.

To combat this particular situation, the member function"dest r oyRef er ences() " isincludedin
the Agent baseclass. Thiswill cancel all outstanding jobs and cancel any interest in other event sourc-
esaswell, destroying any circular references in the process. Provided there are no other referencesto
the object elsewhere, Python should now be able to destroy it.

If you have circular references within your derived class, you may wish to extend this method in your
own class so asto undo those circular references. Using the same member function name will make it
less confusing to a user of your class as they will only have to call one function. If thisis done, you
should ensure however that the last thing the derived version of the method doesis call the version of
the method in the immediate base class.

Alarmsand Timers

Alarms and timers are ameans of having a callback function executed at some point of timein the fu-
ture. The difference between an alarm and atimer isthat an alarm is defined by an absolute value or
pointintime, whereasatimer isdefined by arelative offset in time. For an alarm this means supplying
the clock time in seconds at which the callback should be executed. For atimer this means supplying
the number of seconds from now at which point the callback should be executed.

cl ass Obj ect (netsvc. Agent):
def __init_ (self):
of fset = 60
now = time.time()
then = now + offset
sel f.set Al arnm(sel f.call backl, t hen)
sel f.startTi mer(sel f.call back2, offset,"timeout-1")
sel f.startTi mer(sel f.callback2, of fset+10, "ti meout -2")
def call backl(self):
print "al arnt
def call back2(sel f, name):
print nane
if name == "timeout-1":
sel f. cancel Timer("ti meout-2")

29

Event Framework

The member functionfor setting analarmis”set Al ar n() " and that for starting atimeris"st art -
Ti mer () ". Thefirst argument isthe callback function, the second argument isthe absolute or relative
time and the third argument is an optional identifier for that alarm or timer. Scheduling an alarm or
timer with an identifier matching that of an alarm or timer which hasn’t yet expired will cause that un-
expired alarm or timer to be cancelled.

Both typesof events are one off events, with theregistration being cancelled once the callback has been
executed. The identifier may also be used to cancel an alarm or timer before it expires. To cancel an
aarmuse"cancel Al ar n() " andto cancel atimer use"cancel Ti mer () ". Tocancel al pending
alarmsuse"cancel Al | Al ar ns() " and to cancel al pending timersuse"cancel Al | Ti m

er s()".If anidentifier isnot excplicitly provided, aninternal identifier will be automatically created
with it being returned as the result of the function being called to schedule the callback.

Recurring Actions

A recurring action iswhere ajob isrun at regular intervals. Precisely when the callback function asso-
ciated with ajob isexecuted isdetermined by aspecification of theform used by the UNIX cron utility.
The specification consists of five fields each separated by white space. The fields specify:

* minute (0-59),

* hour (0-23),

 day of the month (1-31),

* month of the year (1-12),

 day of the week (0-6 with 0=Sunday).

A field may be an asterisk "* ", which always standsfor "f i r st - | ast ". Rangesof numbers are al-
lowed. Ranges are two numbers separated with a hyphen. The specified range isinclusive. For exam-
ple, 8- 11 for an "hours" entry specifies execution at hours 8, 9, 10 and 11.

Listsare allowed. A list isaset of numbers (or ranges) separated by commas. For example,
"1,2,5,9"and"0- 4, 8- 12". Step values can be used in conjunction with ranges. Following arange
with "/ nunber " specifies skips of the number’ s value through the range. For example, "0- 23/ 2"
can be used in the hours field to specify the callback function be executed every other hour. Steps are
also permitted after an asterisk, so if you want to say "every two hours', just use"*/ 2".

Names can also be used for the "month™" and "day of week" fields. Use the first three letters of the par-
ticular day or month (lower case, or first letter only uppercase).

The day that acallback function isto be executed can be specified by two fields, day of month and day
of week. If both fieldsarerestricted (ie., aren’t "* "), the callback function will be executed when either
field matches the current time. For example, "30 4 1, 15 * 5" would cause the callback function
to be executed at 4:30 am on the 1st and 15th of each month, plus every Friday.

To schedulethistype of job, the"schedul eAct i on() " functionis used except that instead of spec-
ifying the job type as the second argument, the specification string should be used.

30

Socket Events

cl ass Obj ect (netsvc. Agent):
def __init_ (self):
sel f.schedul eAction(self.daily,"0 0 * * *" "daily")
sel f.schedul eAction(sel f.weekly,"0 0 * * Sat", "weekly")
sel f.schedul eAction(self.nmonthly,"0 0 1 * *" "nonthly")
sel f.schedul eAction(self.yearly,"0 0 1 Jan *","yearly")
sel f.schedul eAction(self.holiday,"0 0 25 Dec *","christnmas")
def daily(self):
print "daily"
def weekly(self):
print "weekly"
def monthly(self):
print "monthly"
def yearly(self):
print "yearly"
def holiday(sel f, nanme):
print nane

Asarecurring action by nature will always run at some point in the future, you have to explicitly call
"cancel Acti on() "tostopitfromrunning, evenif it hasalready run at some point intime already.
If you make an error in the specification string such that it isinvalid, no indication will be given and
the job will simply never be executed. The"cancel Al | Acti ons() " member function, aswell as
cancelling actions associated with a once off call of acallback function, will aso cancel all recurring
actions.

Socket Events

In an event driven system, it isimportant that any callback not unnecessarily block waiting for some-
thing to happen. If a callback does block, it prevents any other part of the system from doing some-
thing. The main reason which acallback may block isdueto an attempt to read datafrom asocket when
thereisno datawaiting to be read. In an event driven system, an application should register interest in
the avail ability of data on a socket and only attempt to read data from the socket when it is known that
there is some available.

It isalso advantageousin aevent driven system for socketsto be placed into non blocking mode. When
asocket isin non blocking mode, if dataiswritten to a socket and the socket isfull an error isreturned
indicating that the call would have blocked. The code can now register interest in the possibility of be-
ing able to write data to a socket and subsequently be notified when such a call would be successful.
In the mean time, other parts of the system can still do something.

To register interest in either of these events, the member function "subscri beSocket () " should
be used. The first argument to the function should be the callback function, the second argument the
socket descriptor and the third argument the type of events. If the third argument is not supplied, it will
default to SOCKET_POLLI N, indicating interest in the availability of data on a socket for reading.

31

Event Framework

Other possible values for the third argument are SOCKET _POLLOUT and SOCKET_POLLPRI . The
value SOCKET_PCLLPRI issimilar to SOCKET_PCOLLI Nexcept that it relatesto there being priority
out of band data being availablefor reading. Out of band datais not afeature which isused much these
daysandisn’'t implemented the same on all systems. It is probably best to avoid using out of band data.

A final value of SOCKET_POLLQOUT indicatesinterest in when data can be safely written to the socket
without the call blocking. Note that this will generally nearly always be the case, so you should only
subscribe to this event on a socket, when you know that writing to the socket would cause it to block.
Once you have been notified that it is safe to write to a socket and you have written your data, you
should immediately unsubscribe to this event on asocket, otherwise your callback will continually be
called.

cl ass Agent (netsvc. Agent):

def __init__ (self,host,port):
netsvc. Agent. __init__ (self)
sel f. _host = host
sel f. _port = port
sel f. schedul eAction(sel f.connect, net svc. STANDARD JOB)

def connect(self):
sel f. _sock = socket.socket (socket.AF | NET, socket. SOCK_STREAM

try:

sel f. _sock. connect ((host, port))
except :

di spat cher. stop()
el se:

sel f. subscri beSocket (sel f.read, sel f._sock.fileno())
def read(self,fileno,event):
if fileno !'= self._sock.fileno():
return
if event == netsvc. SOCKET _POLLI N
data = self._sock.recv(1024)
if len(data) ==
sel f. unsubscri beSocket (sel f. _sock.fileno())
sel f. _sock. cl ose()
di spat cher. stop()
el se:
sys. stdout.wite(data)

When you are no longer interested in a particular event on a socket, you can unsubscribe to that event
using the"unsubscri beSocket () " member function. If called with only a single argument, all
eventscurrently of interest on that socket will be unsubscribed. To unsubscribe to only a specific event
type, pass the type of event as the second argument.

Program Signals

The most common circumstance in which an application may receive a program signal iswhen it is
being killed asresult of auser interrupting it by typing control-C, or if running UNIX, when the oper-

32

Program Shutdown

ating system is being shutdown. Other uses for program signals are to force an application to reread a
configuration file.

These three cases are typically indicated by the program signals SI G NT, SI GTERMand SI GHUP. A
robust application should at |east catch the first two of these signals and cause the program to shutdown
gracefully. Thismay entail ensuring that any datais written out to files, removal of filelocks, closing
off of database connections etc.

To subscribe to asignal, the member function "subscri beSi gnal () " should beused. Thefirst ar-
gument should be a callback function to be called when a particular signal occurs and the second ar-
gument the particular signal of interest. A particular agent may only supply one callback for any
particular signal, but different agents may subscribe to the same signal with both being notified when
it occurs. Although an interest in such asignal is usually persistent, it is possible to unsubscribe from
aparticular signal using the member function "unsubscri beSi gnal () " and unsubscribefrom all
signalsusing "unsubscri beAl | Si gnal s()".

cl ass Agent (netsvc. Agent):
def __init_ (self):
netsvc. Agent. __init__ (self)
sel f. subscri beSi gnal (sel f.signal, signal.SlIGd NT)
sel f. subscri beSi gnal (sel f.signal, signal .Sl GTERM
def signal (self,signum:
sel f.schedul eAction(sel f.stop, netsvc. PRI ORI TY_JOB)
def stop(self):
net svc. Di spatcher (). stop()

In practice, only one of the agents subscribed to SI G NT and SI GTERMshould actually shutdown the
dispatcher. This agent should however, not shutdown the dispatcher immediately as other agents may
not yet have received their notification that the signal occurred. The agent should instead schedule a

priority job to actually stop the dispatcher. This priority job will only be executed after all outstanding
signal notifications have been delivered.

Program Shutdown

Subscription to aprogram signal provides ameans of immediately shutting down an application when
caused to do so by an external signal. What program signals don’t do however, is provide a means of
initiating agraceful shutdown of an application from within the application itself. An application could
send itself asignal, however, thisisn't necessarily practical.

A further problem isthat in an event driven system, it may not always be possible to perform every-
thing that is required in asingle callback function. What isinstead needed is the ability to run the ap-
plication for afurther finite amount of time so that any outstanding operations can befinalised first. At
the end of that time, then the application can be stopped.

To support this dightly more orderly mechanism for program shutdown, the member function
"schedul eShut down() " is provided. When an agent wishes to force the program to shutdown it

33

Event Framework

should call this member function. This member function can also be called when an external signal
intended to shutdown the program is received. Doing this in the latter case means you don't need to
have separate code for the two different cases.

If an agent isinterested in the fact that the program is being shutdown, it can call the"subscri be-

Shut down() " member function, supplying acallback function to be called when such an event does
occur. Notethat the call to"schedul eShut down() " will result in the dispatcher being stopped au-
tomatically, so you do not needto doit explicitly. If necessary, an agent can unsubscribe from program
shutdown notifications by calling the member function "unsubscr i beShut down() ".

cl ass Agent (netsvc. Agent):
def __init_ (self):
sel f. subscri beShut down(sel f. shut down)
sel f. subscri beSi gnal (sel f.signal, signal.SlId NT)
sel f. subscri beSi gnal (sel f.signal, signal . SI GTERM
sel f.start Timer(sel f.tinmeout, 60)
def timeout(self):
sel f. schedul eShut down()
def signal (self,signum:
sel f. schedul eShut down()
def shutdown(self, category):
i f category == netsvc. SHUTDOAN_PENDI NG
shutdown is pending
el se:
shutdown has arrived

When shutdown is initiated, any callback function supplied by an agent will actually be called twice.
Thefirsttimeitiscaled, itwill becalled withthe value"SHUTDOAN PENDI NG'. Onceall subscribed
agents have been notified that shutdown is pending, the callback function will then be subsequently
called again, this time with the value "SHUTDOAN_ARRI VED". Upon all agents receiving the second
notification, the dispatcher will be stopped and the process will exit.

Notethat the second of these notificationswill not occur immediately after thefirst. Exactly how much
time may pass is dependent on a number of factors. The first determining factor is the argument sup-
plied to the "schedul eShut down() " member function. If no argument is supplied, or avalue of
"0" issupplied, therewill be an inbuilt delay of 1 second between shutdown being scheduled and the
program actually being shutdown.

Thisimplicit delay gives scope for activities which can't be factored into a single callback function
time to be carried out. For example, it may be necessary to send data via a socket to some remote host
and wait for the response. If the default value of 1 second isinsufficient, or istoo long atime, it can
be overridden in anumber of ways.

Thefirst way of overriding the default value of 1 second is by setting the environment variable
OTCLI B_SHUTDOWNDELAY. If thisis done, it should be set to a value representing the number of
milliseconds to wait. An aternativeisto modify each call of "schedul eShut down() " and explic-

34

Program Shutdown

itly provide the time delay as an argument. If thisis done, the argument should express the number of
full or partial seconds as afloating point value.

Using atimedelay is auseful starting point, as it provides ameans of defining an upper bound on the
amount of time you wish to allow the system to run before it is stopped. Having asmall delay and en-
suring everything is done in that timeis preferable, asin certain circumstances such as the operating
system sending a SI GTERMto an application on system shutdown, the operating system will usually
forcibly shutdown your application using SI GKI LL after 5 seconds if it doesn’t do so of its own ac-
cord.

Although getting away from the goal of having only one mechanism for shutting down a program, in
this circumstance, it may still be preferable to separately identify a SI GTERMsignal and deal with it
differently. Here you might only do anything that is absolutely essential and stop the processimmedi-
ately. What isthe best approach will depend on the specific application in question.

If the problem of a SI GTERMsignal isignored, afurther mechanism for delaying actual shutdown of
aprocessis also provided. If upon receiving notification of a pending shutdown, an agent knows it
needsto wait for someevent to occur first, it can call the"suspendShut down(') " member function.
If thisis done, although the shutdown delay may expire, actual program shutdown will not occur until
acorresponding call to the"r esunmeShut down() " member function. If more than one agent calls
"suspendShut down() ", actua shutdown will not occur until "r esunmeShut down() " has been
called a matching number of times.

Although it is possible to suspend the shutdown processin thisway, it is not possible to cancel it com-
pletely. But then, if an agent doesn’t call "r esuneShut down() " at some point it would never actu-
ally occur. Thiswouldn’t bevery useful however, asmorethan likely parts of the application may have
placed themselves into a dormant state.

Finally, as scheduling program shutdown upon asignal occurring would be donein practically all pro-
grams, support for this has been factored into the actual dispatcher. Thus, instead of dedicating a spe-
cific agent to catch any signals, the main program file can contain:

di spat cher = netsvc. Di spat cher ()
di spat cher . noni t or (si gnal . SI G NT)
di spat cher. noni t or (si gnal . SI GTERM

If this interface is used however, the only means of overriding the delay between shutdown being
scheduled and actual shutdown is by the OTCLI B_ SHUTDOANDEL AY environment variable.

The dispatcher also provides the member function "shut down(') ". This behaves much the same as
the"schedul eShut down(') " member function of the Agent class. The presence of the "shut -
down() " member function in the dispatcher, alows code which is distinct from an agent to also
schedule a program shutdown.

35

Event Framework

Note that whatever mechanism is used to initiate program shutdown using these features, messages
will be displayed viathe logger indicating that shutdown has been scheduled and that it has arrived.
Additional messages will be displayed viathe logger when the shutdown process is suspended and re-
sumed.

36

Service Agents

The service agent framework in OSE provides request/reply and publish/subscribe features similar to
that found in message oriented middleware packages. Unlike most of the available packages, the serv-
ice agent framework does not have aflat namespace with respect to naming, but uses an object oriented
model, with each service having its own namespace with respect to subject names for subscriptions
and request method names.

Building on this object oriented approach, it is possible to subscribe to the existence of specific serv-
ices, or to groups of services as well as aspects of the services themselves. By using subscription to
groups, an application can be setup to dynamically handle the introduction and withdrawal of new
services rather than being hardwired. Services are aso able to monitor when subscriptions occur and
identify who is making the subscription if necessary.

All the features of the service agent framework can be applied within the scope of asingle process, or
across a group of distributed processes. A specific service need not even be aware that a service it
makes use of isin aremote process as the interface and means of interacting with that service are the
same. Services may therefore be moved around between processes or onto different machines and the
key parts of the application will not need to be changed.

Asthe Python interface is ssmply a wrapper on top of functionality provided by the OSE C++ class
library, you are not restricted to writing service agents in just Python. In a distributed application for
example, one process may be entirely written in C++, another may use only the Python wrappers, and
athird amix of both if dynamic loading into a Python program were used. This flexibility means you
can use Python where simplicity isimportant, but C++ where better performance may be desirable.

37

Service Agents

The major classesin the OSE C++ class library involved in providing this functionality are the
OTC_SVBr oker ,OTC_SVRegi st ry andOTC_EVAgent classesalongwith variousevent classes.
In adistributed application the OTC_Exchange class comesinto play along with the various classes
used to implement the interprocess communications mechanism.

Service Naming

When using the C++ class library, implementation of a service agent entails the use of a number of
different classes together. In the Python interface this has all been brought together in the Ser vi ce
class. If you wish to create your own instance of a service agent, you need only derive aclassfrom the
Ser vi ce class and then instantiate it.

The most important aspect of creating aservice agent isthe need to assign it aname. Thisnameiswhat
isused by other services to accessyour particular instance of a service agent. Having selected a name,
it should be suppliedtothe Ser vi ce base classat the point of initialisation. If you wished to call your
service"al ar m noni t or ", the constructor of your class might look as follows.

cl ass Al armvbni tor (netsvc. Service):
def __init_ (self,nane="alarmmonitor"):
netsvc. Service. __init__ (sel f, name)

In general thereisno restriction on what you can put in aservice name. It is suggested though that you
avoid any form of whitespace or non printable characters so as to make debugging easier.

In assigning a name to aservice agent, there is nothing to stop you from having more than one service
with the same name. Often the ability to have more than one service with the same nameis useful, but
in other situationsit may be regarded as an error. As a policy on how to handle more than one service
with the same name will be dependent on the actual application, implementation of any schemeto deal
withiit isleft up to the user.

If you want to query what the service nameisfor an instance of a service agent, it can be queried using
the"ser vi ceName() " member function. If you need to know the uniqueidentity of aservice agent,
it can be queried using the"agent | denti t y() " member function. Even when two services share
the same name, they will still have distinct agent identities. These aswell as other detailsrelating to a
service agent can also be obtained from the object returned by the "ser vi ceBi ndi ng() " member
function.

Note that the Ser vi ce class ultimately derivesfrom the Agent class and as such all features of the
event system are also accessible from a service agent. The Ser vi ce class aso builds on the same
model used by the Agent class with respect to destruction of an object instance and the cleaning up
of circular references. As such the Ser vi ce class contains a derived implementation of the "de-

st royRef er ences() " member function found in the Agent class. Any derived service agent
should use this function in the same way as defined for the Agent class.

38

Service Audience

Service Audience

When you creste a service, the existance of that service will be broadcast to all connected processes.
If you wish to restrict visibility of a service to just the process the serviceis contained in, or a subset
of the connected processes, a service audience can be defined.

To define the service audience, an extra argument needs to be supplied to the Ser vi ce base class
when it isinitialised. By default the service audienceis"* " to indicate that knowledge of the service
should be broadcast aswidely as possible. Setting the service audience to an empty string, will restrict
visibility of the service to the local process.

cl ass Al armvbni t or (netsvc. Service):
def __init_ (self,nane="alarmnmonitor", audi ence="*"):
netsvc. Service. __init__(sel f, nane, audi ence)

Other values can be supplied for the service audience and their meaning will depend upon how thein-
terprocess communications links of the service agent framework are configured. This aspect of the
service audience field will be discussed when support for distributed applicationsis covered.

Note that in setting the service audience, you are also restricting your service agent as far as what serv-
icesit can subscribeto. If you set the service audience to that indicating the local process only, you
will only be able to subscribe to services which exist in the local process. Thisis because servicesin
remote processes will not know anything about you. If you need to be able to subscribe to services no
matter wherethey are, you would generally be best |eaving the service audience set to the default value.

Anonymous Service

Although referred to as a service, a service agent can act in therole of either aclient or server. That is,
asaclient it isauser of other services and would not expect to have subscriptions made against it or
receive requests. In thissituation the name assigned to the serviceisimmaterial and itisvalid to supply
an empty service name. In fact, if you do not explicitly supply a service name when initialising the
Ser vi ce baseclass, it will default to an empty string.

cl ass AnonynousServi ce(netsvc. Service):
def __init__(self):
netsvc. Service. __init__ (self)

In general it is still preferable to supply anon empty value for the service name. Doing so will mean
that the service agent will appear as a separate entity within any debugging tools and although the ap-
plication itself may not need to use that service agent in the role of a server, you might still include
functionality which can be used from debugging tools so you know what the service agent is doing.

39

Service Agents

Service Groups

When a service agent is created, the name of the serviceisnotionally listed in aglobal group. In respect
of this global group, unless you track the coming into existance of every single service agent, there is
no way to make conclusions about a subset of services. Evenif you do track the creation of every single
service agent, the only way you might be able to distinguish a service agent as belonging to some
group, isto introduce into the name of the service agent some form of artificial naming hierarchy.

Rather than rely on an artificial means of grouping service agents based on the service agent names, a
separate concept of servicegroupsisimplemented. To add aservice agent to aspecific group, the"j o-
i NG oup() " member function can be called at any point after the Ser vi ce base class has been in-
itialised. That is, adding a service agent to a service group does not specifically have to been donein
the constructor but can be done at alater time. To remove a service agent from a service group it has
joined, the"l eaveG oup() " member function can be called.

cl ass Equi prent Agent (net svc. Servi ce):
def __init__ (self,nane, audi ence="*"):
netsvc. Service. __init__(sel f, nane, audi ence)
sel f.j oi nGroup("equi prent -agents")

Aswith service names, it is recommended that you avoid using any form of whitespace or unprintable
charactersin service group names. The empty service group should also not be used to avoid confusion
with the global group.

Service Registry

The service registry is where information about available servicesis recorded. Each processin adis-
tributed applicaton hasits own service registry. The service registry in aprocess will list any services
which arelocal to that process as well as any of which knowledge has been imported into the process
from a remote process.

That each process hasits own service registry means that the service agent framework can work quite
happily within the context of asingle process, aswell aswithin the context of adistributed application.
That is, when you only have asingle processit isn't necessary for that process to be connected to a
central server for the system towork. In thisrespect, each serviceregistry actsasa peer to other service
registries and not in a client/server mode.

A further consequence of thisisthat even when a processis part of adistributed application and the
central message exchange process is terminated, any processes which were connected to it are not
forced to restart themselves. In this scenario, any interested parties would be notified of the fact that
remote services are no longer accessible and would take any action as appropiate. When the centra
message process is restarted, processes would automatically reconnect, with interested parties being
notified that the remote services are once more accessible.

40

Service Registry

Any service agent may make queries against itslocal serviceregistry and get back an immediate result
whichreflectsthe current state of the serviceregistry. A service agent may also subscribeto the service
registry or aspectsof it and be notified in real time of changes made to the service registry. When sub-
scribing to the service registry itself, a service agent would be notified of all available services, when
those services join or leave groups and when those services are withdrawn.

Subscribing to the serviceregistry asawhole isauseful debugging tool asit can produce an audit trail
relating to the creation and deletion of services aswell as group memberships. When used as a debug-
ging tool aswell asin other cases, it may not be appropriate that a service agent be created merely that
the service registry can be queried. To this end, the member functions of the Ser vi ce classrelating
to the service registry are also available through the Moni t or class. Infact, the Ser vi ce class de-
rives from the Moni t or class.

To setup a subscription against the service registry as a whole, the member function "subscr i b-
eRegi stry() "isused. A subscription to the serviceregistry can later beremoved using the member
function "unsubscri beRegi stry()".

cl ass Regi stryMonitor(netsvc. Mnitor):
def __init_ (self):
netsvc. Monitor. __init__ (self)
sel f.subscri beRegi stry(sel f.announce)
def announce(sel f, bi ndi ng, group, stat us):
if group == None:
gl obal group
action = "W THDRAWN'
if status == netsvc. SERVI CE_AVAI LABLE
action = "AVAI LABLE"
nanme = bi ndi ng. servi ceName()
identity = binding.agentldentity()
print "SERVICE-%: % (%)" % (action, nane’,identity)
el se:
specific group
action = "LEAVE"
if status == netsvc. SERVI CE_AVAI LABLE
action = "JON'
nane = bi ndi ng. servi ceName()
identity = binding.agentldentity()
print "%-GROUP[¥&]: % (¥%)" %\
(action, group , name’,identity)

When making queries or subscriptions against the service registry, details of a specific service are re-
turned in the form of a service binding object. Thisisthe same type of object returned by the "ser v-

i ceBi ndi ng() " member function of a specific service agent. Where an operation needs to refer to
aparticular serviceit will be usually done in terms of this service binding object rather than the infor-
mation it carries.

41

Service Agents

Member functions of a service binding object which may prove useful include"ser vi ceNane() ",
"agentldentity()","servi ceAudi ence()","processAddress() " and"servi ceLo-
cation()".Of these, "servi ceLocat i on() " returns either "SERVI CE_LOCAL" or

"SERVI CE_REMOTE", giving an indication if the serviceislocated in the same process or a remote
process. The"pr ocessAddr ess() " member function will return aninternal addressrelating to the
actual process the serviceislocated in.

Althoughtheshorthand"agent | dent i t y() " member function providesamorereadablevalue, the
"servi ceAddr ess() " member function is also provided and returns the internal address used to
identify the service. Note though that if in a distributed application an intermediary process along the
route to the actual serviceisrestarted, when all processes reconnect, the service addresswill be differ-
ent where as the process identity and agent identity would be the same. This reflects the fact that itis
still the same service, but the route used to contact the service has now changed as the intemediary
process was restarted.

When subscribing to the service registry as awhole, each notification will also include a group and
status value. When the group is"None", the notification refers to either the availability or withdrawal
of aservice. For any other value of group, it indicates that a specific service isjoining or leaving that
group. Whether a service has become available or has been withdrawn, or similarly whether a service
hasjoined or |eft agroup is given by the status value. When the statusis "SERVI CE_AVAI LABLE",
aservice has become available or has joined a group as appropriate. When the status value is
"SERVI CE_W THDRAWN' the service has either been withdrawn or has |eft a group as appropriate.

Note that when the status indicates that a service has become available it doesn’t mean that the service
only just got created. In the case that a service isin aremote process, it may be the case that a service
has existed for some time, but because the local process has only just connected into a distributed ap-
plication it has only just become aware of that fact.

Similarly, when aserviceiswithdrawn, if the service wasin aremote process it means the service can
no longer be contacted. This may have occurred because the serviceitself has been destroyed, the proc-
essinwhich the service existed has been destroyed or that an intemediary process involved in the com-
munication path for contacting that process has been destroyed and the remote processis currently no
longer contactable.

By subscribing to the service registry it is possible to receive in real time notitifications regarding the
availability of servicesassuch eventshappen. If you only wish to find out which servicesare available
at aparticular instant in time, you can usethe"ser vi ceAgent s() " member function. Note that de-
pending on the number of service agents available, calling this member function repetitively can incur
significant overhead. If possible this member function should be used sparingly and a subscription
against the service registry used instead.

42

Service Announcements

Service Announcements

If aservice agent subscribes to the registry using a specific service name, the service agent will be no-
tified when any service with that name becomes available or is subsequently withdrawn. When sub-
scribing to the registry using a specific service name, no notification is given regarding groups that
those same services may join.

cl ass ServiceMnitor(netsvc. Mnitor):
def __init__ (self,nane):
netsvc. Monitor. __init_ (self)
sel f.subscri beServi ceNane(sel f.announce, nane)
def announce(sel f, bi ndi ng, status):
action = "W THDRAWN'
if status == netsvc. SERVI CE_AVAI LABLE
action = "AVAI LABLE"
nanme = bi ndi ng. servi ceNane()
identity = binding.agentldentity()
print "SERVICE-%: % (%)" % (action, nanme ,identity)

The name of the member function for subscribing to the existance of a service agent by nameis"sub-
scri beServi ceNane() ". A subscription can be cancelled by calling the member function "un-
subscri beServi ceNane() ".

Having identified aparticular service agent, it is often useful to know when that specific service agent
isno longer available. The notifications provided when you call the member function "subscr i be-
Ser vi ceName() " will tell you that, but if the service binding had been received through some other
means and you weren't receiving the notifications, it is preferable that you be able to receive anotifi-
cation just in relation to the specific service agent you are using. In this case, the service address can
be obtained from the service binding by calling "ser vi ceAddr ess() " and the member function
"subscri beSer vi ceAddr ess() " usedinstead. This subscription can be cancelled by calling the
"unsubscri beSer vi ceAddr ess() " member function.

class CientService(netsvc. Service):
def __init__ (self, binding):
netsvc. Service. __init__ (self)
address = bindi ng. servi ceAddress()
sel f.subscri beServi ceAddr ess(sel f.announce, addr ess)
sel f. _bi nding = binding
start using service
def sel f.announce(sel f, bi nding, group, status):
if group == None:
i f binding.agentldentity() == self._binding.agentldentity():
if status == netsvc. SERVI CE_W THDRAWN
sel f. unsubscri beServi ceAddr ess(bi ndi ng. servi ceAddress())
sel f. _bi nding = None
stop using service

43

Service Agents

Group Announcements

If aservice agent subscribes to the service registry using a specific service group, it will be notified
when any service joins or leaves that group. Notice that a service has left a particular group will also
be be notified when the service is withdrawn and the service hadn’t explicitly left the group before
hand. The member functions relating to service group subscriptionsare"subscr i beSer vi ce-
G oup() "and"unsubscri beServi ceG oup() ".

Subscription to a service group is most often used as away of finding out what services exist which
perform a certain function. As an example, service agents which provide an interface to equipment in
atelecommunications network could join a particular group. A service which has the task of monitor-
ing alarms generated by the same equipment could then subscribe to that service group and be notified
about each equipment agent. Knowing about each equipment agent, the alarm monitor could then sub-
scribe to any alarm reports generated by the equipment agents.

cl ass Equi prrent Moni t or (net svc. Servi ce):
def __init_ (self):
netsvc. Service. __init__ (self,"equi pment-nonitor")
sel f. subscri beServi ceG oup(sel f.announce, "equi pnent - agents")
def announce(sel f, bi ndi ng, group, stat us):
if status == netsvc. SERVI CE_AVAI LABLE:
sel f. moni t or Reports(sel f.al arm bi nding, "alarm*")
el se:
sel f.ignoreReports(binding)
def al arm(sel f, service, subject, content):
print subject, content

By using aservice group it istherefore possible to make an application respond dynamically to thein-
troduction of new service agents. In the case of the equipment alarm monitor for atelecommunications
network, it would not be necessary to hardwirein details of the equipment. Instead, when adding anew
piece of aequipment, the service agent providing an interface to that equipment need only add itself
to the appropriate service group.

Such amechanism could al so be used to monitor alarmsraised asaresult of problemsin the application
itself and need not be alarms generated by some piece of equipment. This mechanism could therefore
also be used as the basis of an application health monitoring system.

Service Lookup

The ability to subscribe to the service registry provides a means of tracking the existance of service
agents over time. The alternative to subscribing to the service registry to find out about available serv-
ices, isto do alookup against the serviceregistry. Performing alookup will tell you immediately what
service agents exist at that particular point in time. No subscription will be registered when doing a
lookup though, so if you need to know when a service agent is subsequently withdrawn it still may be
appropriate to subscribe to the registry using the address of the specific service agent you use.

44

Service Lookup

cl ass Pol lingService(netsvc. Service):
def __init__ (self,nane, peri od=60):
netsvc. Service. __init__ (self)
sel f. _name = nane
sel f. period = period
self.initiateRequests("poll")
def initiateRequests(self,tag):
bi ndi ngs = sel f. | ookupServi ceName(sel f._nane)
for binding in bindings:
service = self.servi ceEndPoi nt (bi ndi ng)
presume renote service provides uptime nethod
id = service.uptinme()
sel f. processResponse(sel f. handl eResul t, i d)
self.startTimer(self.initiateRequests,self. _period,"poll")
def handl eResult (self,result):
address = sel f.current Response().sender ()
bi ndi ng = sel f.| ookupServi ceAddr ess(addr ess)
i f binding != None:
print binding.agentldentity(), result

A number of different types of lookup can be made against the serviceregistry. Thefirst two alow you
to lookup all service agents which have a particular service name, or all service agents which are cur-
rently amember of aspecific servicegroup. Thetwo member functions corresponding to these lookups
are"l ookupSer vi ceNane() " and "l ookupSer vi ceG oup() ". Both these lookup functions
return alist of service binding objects corresponding to the service agentsfound. If there are no service
agents matching the search criteria, an empty list is returned.

The third type of lookup is that of looking up a specific service agent using its service address. In this
caseyou will need to have been ableto obtain the service address by some other meansfirst. The mem-
ber function hereis"l ookupSer vi ceAddr ess() ". Theresult will be the service binding object
corresponding to that service agent, or None if the service agent is no longer available.

In order to obtain alist of all services known of by the service registry, the member function "ser v-

i ceAgent s() " can be used. This should however be used sparingly because of the overhead which

might be incurred when there are large numbers of services. If possible, subscription against the serv-
iceregistry should still beused if itisnecessary totrack all available services. Overhead can bereduced
by using subscription and caching the results as Python data structures, with Python objects accessing
the cache directly. This avoids the trandation from C++ data structures to Python data structures.

Similarly to service agents, alist of al service groups can be obtained by calling the member function
"servi ce& oups()".Ifitisnecessary to determine which service groups aparticul ar service agent
isamember of, an optional argument can be suppliedto"ser vi ceG oups() ", that argument being
the service address of the service agent of interest.

45

Service Agents

46

Service Reports

When using the service agent framework, in addition to being able to subscribe to the service registry
in order to receive announcements regarding the existence of services, it is also possible to subscribe
to actual services. When subscribed to aservice, if that service publishes areport with asubject match-
ing the subscription, the subscriber will automatically receiveit.

Referred to as publish/subscribe, thisisacommon feature of packagesimplementing message oriented
middleware services. Note that in thisimplementation, the design and interface are driven by smplic-
ity. Asaresult, theimplementation is not underlaid by persistent message queues. While a subscriber
existsand is known of by the publisher, it will receive any reportsfor which it hasavalid subscription.
If asubscriber is destroyed but is subsequently restarted, it will only receive reports published from
that time onwards, it will not receive reports which may have been published in the time that it was
offline.

The system design can therefore be likened to a system implementing i nstant messaging as opposed to
amailing list. In instant messaging you will only see those messages which are posted into a group
while you are online, whereas with amailing list any messages posted while you were away will till
be there for you to see when you log back in.

Asabasic system, thismodel of operation is suitable for many applications, but not al. If you are de-
veloping asystem whereit isimperative that you never miss a message, you would be advised to pur-
chase a commercial message oriented middleware package. Y ou will of course have to deal with the
extra complexity and cost that entails.

47

Service Reports

Publishing Reports

If aservice agent needs to publish areport, the member function "publ i shReport () "isused. In
publishing areport, it will generally be the case that a service agent does it without caring who may
actually be subscribed to that report. This is often referred to as anonymous publishing and resultsin
amore loosely coupled system which can adjust dynamically to changes. That is, it isnot necessary to
hardwire into a service to whom it should send areport, instead, a service which isinterested in the
report will subscribe to it and the underlying system will handle everything el se.

sel f. publ i shReport ("subject.string", "val ue")

sel f. publ i shReport ("subject.integer", 12345)

sel f. publ i shReport ("subject.float", 1.2345)

sel f. publ i shReport("subject.list",[1,2,3,4,5])

sel f. publ i shReport ("subject.dict",{"one":1,"two": 2})

When publishing areport, a service agent needs to supply a subject which in some way identifiesthe
purpose of thereport, aswell asthe content of the report. It isthrough subscription to specific subjects
that subscribers will indicate their interest in specific reports. The subject name assigned to a report
can have any value, but it is suggested that a hierachical naming convention be used. That is, use one
or more name components, where each component is separated by a period.

heart beat

news. | ocal . sanitation
news. donestic.politics
notificati ons. shutdown

By using anaming hierarchy, it becomes possible to aggregate reports into groupings which can then
be easily subscribed to asawhole. Note that there is nothing special about a period as the separator for
the name components. Other separators which are often used for performing the same task are aslash
or acolon.

Monitoring Reports

A desireto subscribe to reports published by another serviceisindicated by a service agent calling the
"moni t or Report s() " member function. In setting up such a subscription, the service agent must
supply a callback function to be called when areport isreceived, the name of the service or the service
binding object of the specific service agent to which it is subscribing and an indication of what reports
itisinterestedin.

In the simplest case, a subscription can supply the exact same subject name under which areport is
published. Alternatively, it can use special wildcard charactersto allow it to pick up reports published
against related subjects. Thetwo special wildcard characterswhich can beused are™* " and " ?". These
can be incorporated anywhere in the subscription pattern.

The"?" can be used to match a single character within the subject name, whereasa"* " will match
any number of characters. Notethat each will match any character, including aperiod or slash. Assuch,

48

Monitoring Reports

asubscription of "syst em *" will match"system ti me" and"system stati stics. us-
er s", but not "syst ent'. To subscribe to any reports from aparticular publisher, "* " would be used.

Note that the subscription pattern described here is the default. It is actually possible within the C++
implementation of a service agent to override the default and supply an aternate matching algorithm.
For example, in a bridge to the TI1B/Rendevous package, a service agent would most likely redefine

the matching algorithm to match that of that package. Therefore, when subscribing to a service agent,
always check first exactly which scheme it uses.

cl ass Publisher(netsvc. Service):

def __init_ (self):
netsvc. Service. __init__("publisher")
sel f.joi nGoup("publishers")
sel f. publ i shReport ("systemctine", netsvc. DateTi me(), -1)
sel f.startTimer(sel f.timeout, 10, "heartbeat")

def timeout(self,tag):
sel f. publ i shReport ("systemtime", netsvc. DateTi ne())
sel f.start Ti mer(sel f.timeout, 10, "heartbeat")

cl ass Subscri ber(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__ (self)
subscribe to any service agent with nane "publisher”
sel f. nmoni tor Reports(sel f.report, "publisher","system*")
def report(self,service, subject,content):
bi nding = self.currentReport(). publisher()
identity = binding.agentldentity()
publisher = "(%/%)" % (‘service',identity)
if subject == "systemctinme":
now = str(netsvc. DateTi ne())
print "% becane available at %" % (publisher, now)
print "% originally started at %" % (publisher,str(content))
elif subject == "systemtime":
print "% was still alive at %" % (publisher,str(content))

When called, the callback supplied by the subscriber will be passed three arguments. These are the
service binding object for the service agent which published the report, the subject under which the
report was published and the content of the report.

The service binding object for the service agent which published the report is provided for a number
of reasons. Thefirst isthat sSince more than one service agent may use the same service name, it is pos-
sible that a subscription based on service name might result in responses from more than once service
agent. The service binding object istherefore supplied so that it is possible to distinguish from whom
areport originated. The service binding object may also be used to identity a particular service agent
and send arequest toit. Thismay be less of an issueif when subscribing to a service agent, the service
binding object for the specific service agent of interest is used as opposed to aservice name. Thiselim-
inates the possibility of getting reports from unrelated service agents using the same service name.

49

Service Reports

cl ass Subscri ber(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__ (self)
subscribe to the service group "publishers"
sel f.subscri beServi ceG oup(sel f.announce, "publishers")
def announce(sel f, bi ndi ng, group, stat us):
if status == netsvc. SERVI CE_AVAI LABLE
now subscribe to service agent which is nmenber of group
sel f. noni t or Reports(sel f.report, binding, "system *")
el se:
sel f.ignoreReports(binding)
def report(self,service, subject,content):
bi nding = self.currentReport (). publisher()
identity = binding.agentldentity()
publisher = "(%/%)" % (‘service',identity)
if subject == "systemctinme":
now = str(netsvc. DateTi ne())
print "% becane available at %" % (publisher, now)
print "% originally started at %" % (publisher,str(content))
elif subject == "systemtinme":
print "% was still alive at %" % (publisher,str(content))

As expected, the subject is that under which any report was published. Asto the content of the report,
thisis not limited to being a string, but can be any of the basic Python scalar types, alist, tuple or dic-
tionary, as well asthe None type and a number of extended types. User defined scalar types can also
be used providing that appropriate encoders/decoders are available.

If you wish to cancel asubscription to aservice, the"i gnor eReport s() " member function should
be used. Thisshould be supplied the name of the service and the exact same subject pattern used when
subscribing to the reports in the first place. If no subject pattern is supplied, all subscriptions against
that service name will be removed.

Lifetime of Reports

When publishing areport, the report will be sent to any service agents which have a current subscrip-
tion which matches the subject associated with the report. The default behaviour is then such that the
publishing service forgets all about the report. In this case, if a new subscription arrived immediately
after, it would only be sent any reports which were published after its subscription was received. The
new subscriber would not receive acopy of the report which was published just beforeits subscription
was received.

In some situations however, it isdesirable that anew subscriber be able to obtain the last report which
may have been published against any subject it isinterested in. Thisisuseful in the context that areport
isused to reflect the status of a service. By being able to obtain the last published report, a subscriber
can know the current state of the service immediately and doesn’t have to explicitly request it or wait
for the status to change.

50

Lifetime of Reports

For such cases, it is possible to supply an optional lifetime for areport. That is, atime in seconds for
which the report should be cached by the publishing service. When such avalueis supplied, if a sub-
scription arrives within that time, it will be sent acopy of that report. If avalueof "- 1" issupplied for
thelifetime, it will effectively cache the report indefinitely.

publish and cache indefinitely
sel f. publi shReport("system status","idle",-1)

publish and cache for 60 seconds
sel f. publi shReport ("system action","tw ddl e thunb", 60)

publish but don’t cache
sel f. publ i shReport ("system thought", "bored")

A cached report will only be discarded if anew report is published against the same subject, or the
lifetime specified expires. If anew report published against the same subject has no lifetime associated
with it, the cached report will be discarded, but the new report will not be cached. Note that with this
mechanism, only the last report published on a specific subject will ever be cached when alifetime
valueis provided.

To make the implementation as simple as possible, a report which has been cached against a subject
with afinite lifetime and which has expired, will only be discarded when a new report with the same
subject name is published, or a new subscription arrives which would have matched the subject. This
isdoneto avoid having to setup internal timersto trigger destruction of the report at the moment it ex-
pired.

A conseguence of this approach however, is that a report may consume resources unnecessarily be-
yond the lifetime which it was supposed to exist. If this becomes an issue, it is possible for aservice
agent to periodically purge any expired reportsitself. This can be done by calling the member function
"pur geReports()".

cl ass Publisher(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__(self,"publisher")
purge expired reports every 15 m nutes
sel f. schedul eAction(sel f.purgeReports,"*/15 * * * *")

In addition to being able to explicitly purge expired reports for performance reasons, a service agent
may also prematurely expire and purge reports which are older than a certain time. The member func-
tionfor thisis"expi r eReport s() " and accepts a subject pattern and optional agein seconds. The
age defaultsto "0" which would result in any cached report matching the subject pattern being imme-
diately expired and purged. If anon zero value for age is supplied, only reports which were older than
that age would be expired and purged. To apply thisto al cached reports, regardless of subject, the
"expi reAl | Report s()" member function can be used.

51

Service Reports

Although"pur geRepor t s() " existsspecifically to deal with potential performanceissuesin avery
limited number of cases, the"expi r eReports() " and"expi reAl | Report s() " member func-
tions are useful where aservice may havereset itself and it was necessary to discard al cached reports
so that new subscribers didn’t receive them.

Identity of Subscribers

In most circumstances the identity of a subscriber is not important, however, such information can be
quite useful in afew circumstances. At present thisinformation is available by overriding amethod in
the service agent base class.

cl ass Publisher(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__(self,"publisher")
def handl eSubscri ption(self,subscription):
subscri ber = subscription.subscriber()
i f subscription.status() == netsvc. SUBSCRI PTI ON_ REQUESTED
i f self.matchSubject(subscription.subject(),"systemtinme"):
sel f. sendReport (subscri ber,"systemtime", netsvc. DateTime())

One can use thisfeature in preference to caching reports when they are published. That is, rather than
caching areport when it is published so that a new subscriber automatically receivesit, generate the
report only when the subscription arrives. Obviously however, in this approach we would only want
to have the report sent to the particular subscriber and not to all subscribers as they would potentially
get duplicates otherwise.

To cater for thisscenario, themember function"sendRepor t () " issupplied. Inthisvariant of report
publishing, the first argument is the service binding object of the subscriber obtained from the sub-
scription notification. Thisreport will only be sent to the subscriber in question and will not be cached.
Notethat if areport was aso cached against the subject in question, the subscriber would still receive
itaswell. Both anonymous publishing and targeted reports should therefore not be used in combination
for aspecific subject as it may give undesired results.

The member function "mat chSubj ect () " issupplied to assist in determining if the subject pattern
contained in the subscription matches that of a particular subject. The first argument to "mat chSub-
j ect () " should be the pattern and the second the actual subject. Although not used here, the opposite
to the statusvalue"SUBSCRI PTI ON_ REQUESTED" isthevalue "SUBSCRI PTI ON_W THDRAWN".

Notethat if the"sendReport () " member function is used to send a report and the recipient has a
subscription against the publishing service, but doesn’t have a subscription against that service match-
ing that subject, the report will not be delivered viathe callback it originally supplied with its subscrip-
tion. A similar situation is where a service receives an unsolicited report, or had since unsubscribed
from the reports. In these cases there is no current callback in place for reception of the report. When
this occurs the member function "unexpect edReport () " will becalled. A service agent may if it
desires override this member function so asto deal with any such unexpected reports.

52

Identity of Subscribers

A further use of the mechanism for identifying a subscribers identity, is so that subscriptions can be
tracked and for processing or interception of data only to be undertaken while there are subscribersin-
terested in the results. This avoids unnecessarily publishing reports when it is known there would be
no one to send them to.

cl ass Loghbnitor(netsvc. Service):

def __init_ (self):
nane = "l ogmon@s" % net svc. processldentity()
netsvc. Service. __init__ (sel f, nanme)
sel f. | ogger = netsvc. Logger ()
sel f. _channels = {}

def notify(self,channel,|evel, message):
agent = channel [1:-1]

report = {}
report["agent"] = agent
report["level"] = leve

report["nmessage"] = nessage
sel f. publ i shReport (agent, report)

def handl eSubscri ption(self,subscription):
agent = subscription.subject()

channel = "(%)" % agent
i f subscription.status() == netsvc. SUBSCRI PTI ON_REQUESTED
if len(agent) != 0:

subscri ber = subscription.subscriber().agentldentity()
if not self._channel s. has_key(channel):
sel f. _channel s[channel] = []
sel f. _l ogger. noni t or Channel (channel , sel f. notify)
sel f. _channel s[channel] . append(subscri ber)
el se:
if self._channel s. has_key(channel):
subscri ber = subscription.subscriber().agentldentity()
i f subscriber in self._channel s[channel]:
i ndex = sel f._channel s[channel].i ndex(subscri ber)
del sel f._channel s[channel][i ndex]
if len(self._channel s[channel]) ==
del sel f._channel s[channel]
sel f. _l ogger. noni t or Channel (channel , None)

| ogger = netsvc. Logger ()

cl ass Publisher(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__(self,"publisher")
sel f. _channel = "(%)" %sel f.agentldentity()
def debug(sel f, nessage):
| ogger. notifyChannel (sel f._channel, netsvc. LOG DEBUG, nessage)

In this use of subscription information, the subscription to a specific subject isused to trigger intercep-
tion of messages logged viathe logger interface. For the time that subscriptions exist for a particular

53

Service Reports

subject corresponding to alog channel, the log messages on that log channel will be intercepted and
published. This can be useful as aremote debugging mechanism and will not unnecessarily load the
process as information is only being captured and published when it is actually required.

Existence of Publishers

When a subscription to aserviceismade, if the service holds any cached reports with a subject match-
ing the subscription, the subscriber will receive them immediately. If however there were no such re-
ports, the subscriber will not receive any reports until some are published having a subject which
matched its subscription. Even when there are reports which can be sent back immediately, if there are
reports against multiple subjects, there is no guarantee as to which order they will bereceived in.

As a consequence, using the reception of areport as an indicator that a service has become available
is not agood approach to take. Thisis because areport may not be received until some time after the
service became available and the subscri ption accepted. Further, thereisno indication when the service
isno longer available.

One way as previoudly described of knowing when a service becomes available or when it is with-
drawn, isto subscribeto the serviceregistry. Although thiswill work, if you have restricted the service
audience of your service agent, it will also possibly tell you about services outside of the scope of what
you can subscribe to.

To avoid this difficulty, the member function "handl ePubl i sher Noti fi cati on() " isprovid-
ed. This member function can be overridden in your service agent and will be called only when a sub-
scription has been matched up and accepted by the service being subscribed to. Note that this
notification will only occur for the first subscription against a particular service agent.

This member function will also be called to acknowledge withdrawal of the last subscription against a
particular service agent, or when a service agent to which you were subscribed has been withdrawn.

cl ass Subscri ber(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__ (self)
sel f. noni t or Reports("publisher”,"*")
def handl ePublisherNotification(self,notification):
nane = notification. publisher().serviceNanme()
identity = notification.publisher().agentldentity()
publisher = "(%/%)" % (‘' nanme’',identity)
if notification.status() == SERVI CE_AVAI LABLE:
print "% AVAILABLE" % publisher
el se:
print "% W THDRAWN' % publ i sher

Knowledge of when a subscription has been accepted or when the service agent subscribed to has been
withdrawn can be useful when there is more than once service agent with the same name, and it is nec-

54

Existence of Publishers

essary to track the lifetime of each. It isalso useful where it might be necessary to immediately send
off arequest to each service agent to obtain information not available via published reports.

55

Service Reports

56

Service Requests

The ability within the service agent framework to find out what services exist and the ability of aserv-
ice agent to publish reports can be useful initself, but more often than not one wants to make a specific
request of a serviceto perform some action. In most cases such an action would result in aresponse,
be it the return of data related to the request being made or an error indication. Referred to as request/
reply, thisis probably the most fundamental feature of message oriented middleware software.

Aswith theimplementation of the publish/subscribe feature, smplicity has been amajor driving force
in influencing the design. As aresult, the implementation of the request/reply feature should not be
likened to that of point to point messages using persistant messages queues. In thisimplementation, if
aservice to which you want to send arequest doesn’t exist you will not be able to send your request,
nor is a service able to receive any requests sent when it wasn't running.

Although persistant message queues are not a feature of this implementation, the request/reply and
publish/subscribe features can actually be seen as sitting at alower level of abstraction. Asaresult, it
would be possible to build on top of these features and implement persistent message queues and gau-
ranteed modes of delivery if required. For many systems such features aren’ t required though, so they
are not implemented with the aim being to make the software as simple as possible to use and under-
stand.

Sending a Request

In order to send arequest to aservice you need to first obtain aservice endpoint object. Thisisaspecial
Python object which holds an internal reference to the service binding object for the service and which
will automatically dispatch your request for you. To obtain a service endpoint, the member function
"servi ceEndPoi nt () " isused.

57

Service Requests

When invoking "ser vi ceEndPoi nt () ", the member function needsto be supplied with either a
service binding object for the particular service agent to which you wish to send the request, or the
name of the service. When a service nameis supplied, alookup will be made against the service reg-
istry and the first service agent found with that service name will be used.

To invoke the request against the remote service agent, the service endpoint object is used as a proxy.
That is, amember function call is made against the object asif it were the actual service object you
wished to call. Theonly differenceisthat the call isn’t synchronous but asynchronous. This meansthat
theresult is not returned immediately.

Asto the parameters to the call, multiple arguments can be supplied, with any of the basic Python sca-
lar types, alist, tuple, dictionary, the None type, aswell as anumber of extended types being able to
be used. User defined scalar types can also be used providing that appropriate encoders are available.
Note that keyword arguments cannot be used and will be ignored.

cl ass PagerClient(netsvc. Service):

def __init__ (sel f, nunber, nessage):
netsvc. Service. __init__ (self,"","")
service = sel f.servi ceEndPoi nt (" SM5")
if service:

servi ce. send(nunber, message)

When a service endpoint is created by using a service name, you should always check whether a serv-
ice agent with that name could actually be found. Thisis done by doing atruth test against the service
endpoint object or comparing it to None. Note that although it may equate to None, the service end-
point object isadistinct object in itsown right. If you don’t check the validity of the service endpoint
object and still make a request against the service, a special exception indicating that such a service
isn’t available will be raised.

cl ass PagerClient(netsvc. Service):

def __init__ (self, nunber, nessage):
netsvc. Service. __init__(self,"","")
service = self.servi ceEndPoi nt (" SM5")
try:

servi ce. send(nunber, message)
except netsvc. Servi ceUnavai |l abl e:
...

Obvioudly the service name by itself can only be used if you don’'t care which instance of aserviceis
used when there ismore than one. If you wanted to select a specific service agent, or wanted to be able
to send arequest to all service agents with the same service name, you would need to perform alookup
against the service registry to obtain the full list of service agents.

class Cient(netsvc. Service):
def __init_ (self,nane):
netsvc. Service. __init__ (self,"","")
bi ndi ngs = sel f. | ookupServi ceName(hane)

58

Handling a Response

for binding in bindings:
service = self.servi ceEndPoi nt (bi ndi ng)
if service:
service.reset ()

Handling a Response

When you send a service request, you do not get an immediate response back. That is, the call isasyn-
chronous. If you want to be able to capture any response generated from arequest, you need to capture
the conversation id associated with the request and then register a callback to handle the response. The
conversation id isthe value returned when you make the call against the service endpoint object. Hav-
ing obtained the conversation id you must then register a callback to handle the response using the
member function "pr ocessResponse() ". If you also want to be notified that the request has
failed, you will aso need to set up a separate callback using the "pr ocessFai | ur e() " member
function.

class Cient(netsvc. Service):

def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
service = sel f.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processReponse(sel f. upti neResponse, i d)
sel f. processFail ure(sel f.uptinmeFailure,id)
def uptinmeResponse(self,result):
print result
def uptimeFailure(self):
print "failure"

The callbacks which you put in place to handle the result and/or failure will be automatically deregis-
tered when aresponse is received. Thiswill be the case whether the responseisvalid or was afailure
indication. Prior to having received aresponse, if you decide you are no longer interested in the re-
sponse, you can call the member function i gnor eResponse() " supplying the conversation id. If
you are submitting multiple requestsin one go, you must call the "pr ocessResponse() " and/or
"processkFai | ur e()" member functionsfor aconversation id before you send any subsequent re-
quest.

Note that prior to the release of OSE 7.0pl5, instead of using the "pr ocessResponse() " and
"processFai | ur e() " member functions, one would use the"noni t or Response() " method.
This method in effect combined the operation of both of the new methods albeit it with subtle differ-
encesasfar asthe argumentsthe callback would be passed and the functionality it implemented. Using
the new methodsiit is possible to register separate callbacks for handling of the result versus afailure.
It iseven possibleto only register interest in one or the other of the result or afailure notification. The
"moni t or Response() " member function should as a result now be viewed as deprecated and
should not be used.

59

Service Requests

Identifying a Response

If acallback is being registered to handle the response from multiple service requests, you will most
likely need to be able to identify to which request aresponse belongsto. To get the conversation ID of
the original request, the"conver sat i onl d() " member function can be called.

class Cient(netsvc. Service):
def __init_ (self,nane):
netsvc. Service. __init_ (self,"","")
bi ndi ngs = sel f. | ookupServi ceName(hane)
for binding in bindings:
service = self.servi ceEndPoi nt (bi ndi ng)
if service:
id = service.uptinme()
sel f. processResponse(sel f. upti meResponse, i d)
print "request", binding.agentldentity(),id
def upti meResponse(self,result):
id = sel f.conversationld()
print "result",id,result

Instead of requesting the conversation id, it is also possible to define your callback so as to take two
arguments instead of one, these being the conversation id and the result instead of just the result.

class Cient(netsvc. Service):
def __init_ (self,nane):
netsvc. Service. __init__(self,"","")
bi ndi ngs = sel f. | ookupServi ceName(hane)
for binding in bindings:
service = self.servi ceEndPoi nt (bi ndi ng)
if service:
id = service.uptinme()
sel f. processResponse(sel f. upti mneResponse, i d)
print "request", binding.agentldentity(),id
def upti meResponse(self,id,result):
print "result",id,result

These are not keyword arguments, but positional parameters which the code which calls the callback
function supplies or not based on the number of arguments the callback accepts. In other words, the
callback must accept the appropriate number of arguments as necessary and in the specified order. If
you know that the remote method being called doesn’t actually return avalid responsg, ie., it returns a
void or null response, you can even leave out the parameters atogether.

class Cient(netsvc. Service):
def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
bi ndi ngs = sel f. | ookupServi ceName(hane)
for binding in bindings:
service = self.servi ceEndPoi nt (bi ndi ng)
if service:

60

Detecting a Failure

id = service.reset()
sel f. processResponse(sel f.reset Response, id)
print "request", bi nding.agentldentity(),id
def resetResponse(self):
print "result"”

In additionto "conver sat i onl d() " the member function"cur r ent Response() " isalso
available. This member function returns an object providing both the "conver sat i onl d() " and
"sender () " member functions. If you need the service binding object for the service agent who sent
the response, you can perform alookup against the service registry using the service address provided
by "sender () ". Note though that you shouldn’t assume that the service binding object will be avail-
able as the remote service may have been withdrawn by the time you make your query.

Detecting a Failure

If you send a service request to a service agent and you need to detect if afailure occurs, you will need
to haveregistered a callback using the "pr ocessFai | ur e() " member function. A failure may oc-
cur due to the service not supplying a method to handle the request you made, an incorrect number of
arguments being supplied, an error within the method being called or because the remote service agent
was withdrawn before a response was received.

When afailure does occur, the details of thefailure can be obtained in anumber of ways. If the callback
you provide doesn'’t take any arguments, you can obtain afailure object detailing the error which oc-
curred by callingthe"cur r ent Fai | ur e() " member function. The member functions provided by
thefailureobjectare"error () ","descri ption()","origi n()"and"detail s()". Thecon-
versation id associated with the request which failed can be obtained using the member function
"conversationld()".

Of the member functions provided by the failure object, the"er r or () " member function returns an
integer error code. The"descri pti on() " member function returns a text description of the error.
The"or i gi n() " member function returns a string which in some way identifies the origin of the er-
ror and"det ai | () " may contain as text, extra details relating to the error which has occurred.

class Cient(netsvc. Service):

def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
service = self.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processResponse(sel f.upti meResponse, i d)
sel f.processFail ure(sel f.uptinmeFailure,id)
def uptimeResponse(self,result):
print result
def uptimeFailure(self):
id = sel f.conversationld()
failure = self.currentFailure()

61

Service Requests

if failure.origin() == "netsvc" and \
failure.error() == netsvc. SERVER METHOD UNAVAI LABLE
nethod didn't exist

Asan alternative to using the "conver sat i onl d() " member function to obtain the conversation
id of the failed request, if the callback accepts a single argument, the conversationid will be passed as
an argument to the callback function.

class Cient(netsvc. Service):

def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
service = self.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processResponse(sel f.upti meResponse, i d)
sel f. processFail ure(sel f.uptinmeFailure,id)
def uptimeResponse(self,result):
print result
def uptimeFailure(self,id):
failure = self.currentFailure()
if failure.origin() == "netsvc" and \
failure.error() == netsvc. SERVER METHOD UNAVAI LABLE
method didn’'t exist

Thisability to have details of the failure supplied as arguments to the callback function also extendsto
the contents of the failure object if the callback function accepts an additional four parametersin ad-
dition to that for the conversation id.

class Cient(netsvc. Service):

def __init_ (self,nane):
netsvc. Service. __init_ (self,"","")
service = self.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processResponse(sel f.upti meResponse, i d)
sel f. processFail ure(sel f.uptinmeFailure,id)
def uptinmeResponse(self,result):
print result
def uptimeFailure(self,id,error,description,origin,details):
if origin == "netsvc" and error == netsvc. SERVER METHOD UNAVAI LABLE
method didn’'t exist

These are not keyword arguments, but positional parameters which the code which calls the callback
function supplies or not based on the number of arguments the callback accepts. In other words, the
callback must accept the appropriate number of arguments as necessary and in the specified order.

62

Lack of Response

L ack of Response

When you send a request, there is no gaurantee that the remote service agent hasn’t been destroyed
even before it receives your request. If aremote service agent delays sending an immediate response
to your request, the problem might also arise that the remote service agent is destroyed before it com-
pletesthe response. Finaly, anintermediate process relaying your request might be shutdown or crash
meaning either the request or response is | ost.

In order to handlethese situations, whenthe"pr ocessFai | ur e() " member functionisused to reg-
ister interest in thefailure of arequest, it will automatically setup asubscription on the existance of the
remote service agent against which the request has been made. In the event that the remote service
agent becomes unavailable before aresponseis received, an application error will be returned as afail-
ure to provide notification of this occuring.

class Cient(netsvc. Service):

def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
service = sel f.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processResponse(sel f.upti meResponse, i d)
sel f. processFail ure(sel f.uptinmeFailure,id)
def uptinmeResponse(self,result):
print result
def uptimeFailure(self,id,error,description,origin,details):
if origin == "netsvc" and error == netsvc. SERVER _APPLI CATI ON_ERROR
request has failed, possibly because no response was received

Notethat the"noni t or Response() " member function which has been made deprecated as of OSE
7.0pl5, does not setup a subscription to the existance of the remote serviceagent. Thus, if you areusing
this older member function to catch the failure of arequest, you will not get any failure notification in
these circumstances.

Althoughthe"pr ocessFai | ur e() " member function will ensurethat afailureisreturned if no re-
sponse is received prior to the remote service agent becoming unavailable, programming errors or ex-
ternal communicationsfailuresin code associated with the remote service agent might still result in no
response being received where the remote service agent still exists. If thisisan issue and you al so want
to implement a timeout whereby if no response has been received within a certain period of time, a
timeout value can be supplied when you call the "pr ocessFai | ur e() " member function.

class Cient(netsvc. Service):

def __init__ (self,nane):
netsvc. Service. __init__ (self,"","")
service = self.servi ceEndPoi nt (" SM5")
if service:

id = service.uptinme()
sel f. processResponse(sel f.upti meResponse, i d)

63

Service Requests

sel f. processFail ure(sel f.uptinmeFailure,id, 60)
def uptinmeResponse(self,result):
print result
def uptimeFailure(self,id,error,description,origin,details):
if origin == "netsvc" and error == netsvc. CLI ENT_REQUEST Tl MEQUT:
timeout occurred

When atimeout occurs, it will be notified as arequest failure. The timeout should be the maximum
number of secondsto wait. The callback will be automatically deregistered and if the response did sub-
sequently arrive it would be ignored. If you wanted a timeout to occur but didn’t want the callback to
be deregistered, you would need to create your own timer. If that timer uses the conversation id corre-
sponding to the request as the timer name, the timer will be automatically stopped if a response does
actually arrive. Y ou should not use the conversation id to set up atimer if you have already defined a
timeout when calling the member function "pr ocessFai | ur e() " asinternaly it will use the con-
versation id for its own timer.

Servicing a Request

When you send arequest, if the remote service agent isimplemented using the Python interface, not
just any member function of the service can be called. In order that amember function of a service can
be called, the service agent must have exported it as a public method. Thisis done by calling the mem-
ber function "expor t Met hod() " and it would normally be done from within the constructor of the
service agent.

cl ass Pagi ngServi ce(netsvc. Service):

def __init_ (self,nane="SM5"):
netsvc. Service. __init__ (sel f, nanme)
sel f. export Met hod(sel f.tine)
sel f. export Met hod(sel f.uptinme)
sel f. export Met hod(sel f. send)

def time(self):
return netsvc. Dat eTi ne()

def uptime(self):
...

def send(sel f, nunmber, message):
...

By default the method name associated with the member function will beits actual name. If you wish
to export a member function under a different method name, the method name can be supplied as an
extraargument to the"expor t Met hod() " member function.

cl ass Pagi ngServi ce(netsvc. Service):
def __init_ (self,nane="SM5"):
netsvc. Service. __init__ (self, nanme)
sel f. export Met hod(sel f.sendMessage, "send")
def sendMessage(sel f, nunber, nessage):
...

64

Generating a Failure

The reason for requiring that methods be explicitly exported isthat it would usually be quite dangerous
to allow open accessto all member functionsof aclass. Thisisbecause any classislikely to implement
methods to assist in intermediate stages of processing arequest. Providing automatic access to such
member functions could compromise the operation of the class.

When amethod isinvoked as aresult of a service request, the default behaviour will be that the value
returned from the method will bewhat is returned to the caller as the response. If necessary, a method
may explicitly indicate that a failure response should instead be returned. A method can a so indicate
that a delayed response will be sent. This latter case is useful when the service needs to do something
first in order to generate a suitable response.

Generating a Failure

If amethod encounters an error and raises an exception thiswill be caught by the service agent frame-
work and afailure response will be generated. The value of the origin for thistype of failure will be
"net svc" and the value of the error code will be "SERVER _APPLI CATI ON_ERROR'". If you want
to generate a failure response which is specific to your application, you should catch any exceptions
and indicate the type of failure response by calling the member function "abor t Response() ".

cl ass Dat abase(netsvc. Service):
def __init__ (self, nane="dat abase", **kw) :
netsvc. Service. __init__ (self, nanme)
sel f. _database = MySQLdb. connect (**kw)
sel f. export Met hod(sel f. execute)
def execute(sel f, query, args=None):
try:
cursor = self._database. cursor()
cursor. execut e(query, args)
i f cursor.description == None:
return cursor.rowcount
return cursor.fetchall ()
except MySQ.db. Progranmm ngError, exception
details = netsvc. exceptionDetail s()
sel f. abort Response(1, "Progranming Error","db", details)
except MySQ.db. Error, (error, description):
sel f. abort Response(error, description, "nysql")

Thefour argumentsto the member function"abor t Response() " aretheerror code, thedescription
of theerror, the origin and any additional details. It is recommended that an origin which clearly iden-
tifies the source of the error, or namespace from which the error codes are derived always be used. If
an originis not used, it becomesimpossible to programmatically deal with an error when different as-
pects of a service generate overlapping error code sets.

Note that the"abor t Response() " member function will in turn raise its own specia exception.
When this exception is caught by the service agent framework, it will be trandated into afailure re-
sponse as described by the arguments used to call "abor t Response() ". Asanew exceptionis

65

Service Requests

raised, you should avoid an except clause which catches all exceptionsin any code which encloses
code which might call "abor t Response() ". Alternatively, you should explicitly pass on excep-
tionsof type Ser vi ceFai | ur e.

try:
sel f. execute(...)

except netsvc. ServiceFail ure:
rai se

except:
sel f. abort Response(...)

If many of the public methods of a service generate the same type of exceptions, rather than provide
code to catch the exceptions in every method, it is possible to override the member function "exe-
cut eMet hod() ". Thismember function is called by the service agent framework to call the actua
member function referred to by a service request. It isimportant to preserve the existing functionality
of this method otherwise service requests will not execute correctly.

cl ass Dat abase(netsvc. Service):
...
def executeMethod(sel f, name, net hod, par ans):

try:

return netsvc. Service. execut eMet hod(sel f, name, net hod, par ans)
except MySQ.db. Progranmm ngError, exception

details = netsvc. exceptionDetail s()

sel f. abort Response(1, "Progranmng Error","db", details)
except MySQLdb. Error, (error, description):

sel f. abort Response(error, description, "nysqgl")

The member function "execut eMet hod() " might also be overridden if you want to track what re-
guests are being made against a service. The arguments to the member function are the name of the
method, the actual member function and the parameters to be supplied when the member function is
called.

Delaying a Response

In a distributed application, it is sometimes the case that when amethod is called it doesn’t have the
information necessary to generate an immediate response. This may be the case where it needsto ini-
tiate its own service requests to accumul ate the data needed to generate the result. Because the service
agent framework is based on an event driven system, it is not possible for the method to simply block
waiting for its own data. Thisis because the method must return before anything else can execute.

Todeal withthis, the member functions"suspendResponse() "and"r esuneResponse() "are
provided. If the"suspendResponse() " member functioniscalled, it will raise an exception which
will be caught by the service agent framework. The name of this exception is Del ayedResponse
and lets the service agent framework know that a response will be sent at a later time.

66

Delaying a Response

When the member function "suspendResponse() " iscalled, acalback function should be sup-
plied as argument which finalises the request and returns the appropriate result. The callback passed
to"suspendResponse() " will only becalledwhenthe"r esuneResponse() " methodiscalled
at some later point in time. In particular, you would call "r esunmeResponse() " once you have col-
lected together all the data which forms the result for the original request.

cl ass Dat abasePr oxy(netsvc. Service):
def __init__ (self, nane="dat abase- proxy")
netsvc. Service. __init__ (self, name):
sel f. export Met hod(sel f.tabl esRequest, "t abl es")
sel f. _request = {}
self. result = {}
def tabl esRequest(self):
service = self.serviceEndPoi nt (" dat abase")
id = service. execute("show tables")
sel f. processResponse(sel f.queryResponse, id)
sel f. processFail ure(sel f, queryFailure,id)
sel f. request[id] = self.conversationld()
sel f. suspendResponse(sel f.tabl esResul t)
def tablesResult(self):
request = sel f.conversationld()
result = self. result[request]
del self. _result[request]
return result
def queryResponse(self,id,result):
if self. _request.has_key(id):
request = self._request[id]
self. result[request] = result
del self. _request[id]
sel f. resuneResponse(request)
def queryFailure(self,id,error,description,origin,details):
if self. _request.has_key(id):
request = self._request[id]
del self. _request[id]
sel f. cancel Response(request, error,description,origin,failure)

Ascan be seen, it will be necessary to save away state information about a suspended request so it can
be later resumed. In this example the conversation id of the original request is associated with the con-
versation id of the downstream request. When the result of the downstream request is received, it can
be saved away and the original request resumed with the cached result being returned. In the event that
the downstream request fails, the "cancel Response() " method is used to abort the original re-
quest.

Aswiththe"abor t Response() " member function, if "suspendResponse() " isbeing caled
from within amethod, it will be necessary for any code to be explicit about what exceptionsit catches,
or to at least catch the Del ayedResponse exception and passit on asis.

67

Service Requests

Notethat "suspendResponse() " and "r esuneResponse() " were only added in OSE 7.0pl5

and are alayer on top of the "del ayResponse() " method which only performed the single opera-
tion of raising the exception of type Del ayedResponse. The newer functions should make the task
of implementing a delayed responese easier, so if you are using "del ayResponse() " you should

change your code to use the newer functions.

Identity of the Sender

Normally it is not necessary to know the identity of the sender of arequest. If ameans of identifying
who has initiated the request is required however, the details of the current request can be queried to
obtain the address of the sender. This can be useful where a separate session object in the form of a
new service is created to manage interaction with a particular client. To obtain the request object for
the current request the "cur r ent Request () " member function is used.

By calling the "sender () " member function of arequest object, the service address of the service
agent initiating the request can be obtained. Having created a separate session for that client, all re-
guests for that session can be authenticated as being from the same service agent. Such a scheme may
even have as a prelude alog in mechanism to ensure that a service agent making the request has suffi-
cient privileges to initiate a separate sesson.

Whether or not alogin and password isrequired, the ideaisthat the method used to initiate the session
returns the name of the service created to manage the session. Such a session object should monitor
the existence of the service agent who initiated the session such that the session can be destroyed au-
tomatically when the owner is withdrawn.

cl ass Session(netsvc. Service):
def __init__ (self,nane,client):
netsvc. Service. __init__ (sel f, name)
self. client = client
sel f. subscri beServi ceAddress(sel f.announce, client)
sel f. export Met hod(sel f. cl ose)
def announce(sel f, bi ndi ng, status):
if status = netsvc. SERVI CE_ W THDRAWN
sel f. destroyRef erences()
def cl ose(self):
client = self.currentRequest().sender()
if client '=self. client:
sel f. abort Response(1, "Not Omer of Session")
sel f. destroyRef erences()

cl ass Service(netsvc. Service):
def __init__ (self,nane="service"):
netsvc. Service. __init__ (sel f, nanme)
self. count = 0
sel f. export Met hod(sel f. | ogin)
def | ogin(self,login, passwd):
aut horise | ogi n/ passwd

68

Invalid Request Method

client = self.currentRequest().sender()

self. _count = self. _count + 1

name "%/ %" % (self.serviceName(), self._count)
session = Session(nane, client)

return nane

Such a mechanism as described can’t be used if such arequest to create a session may originate over
an RPC over HTTP connection. Thisis because the service agent which acts as proxy for the request
istransient and will be destroyed once the request has completed. Further, the service agent which acts
as proxy isn't visible outside of its own process.

The alternative to binding the session to a particular service agent is to create a pseudo unique name
for the service managing the session. To ensure that the session object is destroyed, atimer could be
used to trigger the destruction of the service after a certain period of inactivity. Each request made
against the service would reset the timer giving it anew lease on life. The timeout may be something
which isfixed or which could be defined as one of the arguments supplied in the request to create the
session.

Invalid Request Method

When a service request arrives with a method name which the service doesn’t provide, the member
function"i nval i dMet hod() " iscalled. By default this method will generate a failure response
with origin of "net svc" and error code of "SERVER_METHOD_UNAVAI LABLE". This member
function might be overridden if the ability to dump out information about requests against invalid
methods was wanted. Any derived implementation of this member function should still call the base
class version to generate the appropriate failure response indicating a method was unavailable.

cl ass Service(netsvc. Service):
...
def invalidMethod(self, net hodNane, parans):
print met hodName, par ans
net svc. servi ce. i nval i dMet hod(net hodNane, par ans)

L ocal Service Requests

Use of the interface described so far for initiating a service request is the preferred interface. Thisis
because it will not matter if the service to which the request is being sent isin the same process or an-
other process. It also will not matter if the service iswritten in the same language or a different lan-
guage. However, when the service isin the same process and is also written in Python a short cut is
available. Thiswill avoid the complexity of using delayed responses, but does mandate that the service
being called always be in the same process.

Access to this short cut is through the Python classLocal Ser vi ce. Aninstance of theclassis cre-
ated with the name of the service against which the call isto be made. A call isthen made against the
object asif it werethe actual service. Thisisthe same aswhen aservice endpoint object is used except

69

Service Requests

that theresult isreturned immediately. Note that since theresponse isimmediate, you can’t call ameth-
od which itself would try and use a delayed response.

cl ass Dat abasePr oxy(netsvc. Service):

def __init__ (self, nane="dat abase- proxy")
netsvc. Service. __init__ (self, name):
sel f. export Met hod(sel f.tabl es)
sel f. _active = {}

def tables(self):
service = netsvc. Local Servi ce("dat abase")
return service. execute("show tabl es")

Aswith aservice endpoint object, if thereis more than one service agent with the same name, thefirst
one found will be used. The only restriction is that candidate service agents will only come from the
set of service agents in the same process which are also implemented in Python. If arequest is made
against an instance of Local Ser vi ce and no service agent could be found, an exception of type
Ser vi ceUnavai | abl e will beraised. To avoid this, you can aso perform atruth test against the
object.

Although the request is channelled through directly to the service instance, it isstill not possibleto call
methods of the service which haven't been exported. When this occurs, an exception of type Ser v-

i ceFai |l ur e israised wherethe originisset to "net svc" and the error code is set to
"SERVER_METHOD_UNAVAI LABLE". Any other errors raised by the method being called are simi-
larly indicated using the Ser vi ceFai | ur e exception. Note that each of the attributes of thefailure,
ie., the error code, description, origin and details, are available using member variables and not mem-
ber functions asis the case with a failure response object.

If the member function making the request is servicing arequest from another service, it may be ap-
propriate to trand ate the exceptions into different types of failure responses. Asis, the exceptions
would trandate into a failure response with the same details. This may be confusing for exampleif it
were an exception indicating that a method was unavailable. The remote service making the request
would errornously think that it had called an invalid method when it was actually the implementation
of the method which it had called which had done the wrong thing.

Note that the Local Service classis being deprecated and will most likely not be available in afuture
version of OSE. Y ou are therefore advised not to write any new code using it and change existing code
to use the full messaging system features.

70

M essage Exchange

The features of the service agent framework may be used standalone within a single process or across
aset of connected processes. That is, use of the service agent framework is not dependent on a process
being able to connect to a central message exchange process. When combined with the HTTP servlet
framework and RPC over HT TP interface, a single process may be more than adequate for many ap-
plications, especially simple web based services.

If such a service startsto out grow the bounds of a single process however, the application can easily
be split up across multiple processes or machines. Thiswill enable servicesto be distributed based on
load or proximity to required resources. Being able to split up the application in thisway is aso ad-
vantageous in that it becomes easier to introduce into the application distinct components which are
written in C++ as opposed to Python.

Unlike most message oriented middleware packages, there isno dedicated message exchange process.
Instead, the componentsrelating to client and server aspects of the mechanism for implementing adis-
tributed service agent framework are directly accessible. This meansthat it is possible to take an ex-
isting application and embed within it a message exchange server endpoint. Growing your application
then becomes a simple matter of creating new processes which incorporate a message exchange client
endpoint and have it connect to your original application.

The major classes in the OSE C++ class library used to provide this functionality are the
OTrC_Exchange,OTC I net i ent and OTC_I net Li st ener classes. Note that the Pythonin-
terface only providesthe ability to create connections between processes which make use of the INET
socket protocol. When the C++ interface is used directly, on aUNIX platform there isaso the option
of using the UNIX socket protocol.

71

Message Exchange

Exchange I nitialisation

To create a message exchange endpoint in a process, the Exchange class is used. When creating an
instance of the Exchange classit is necessary to specify whether it is performing the role of ames-
sage exchange server or that of aclient. A message exchange server is a process which takes on the
role of being a hub for message distribution. That is, a message exchange server is a process which
accepts connections from one or more message exchange clients and distributes messages between the
client processes as appropriate.

Two different approaches can be taken in regard to the message exchange server. Thefirst isthat the
message exchange server component can be embedded within an existing application and new clients
attach to that existing application. Alternatively, a separate process can be created which embeds just
the message exchange server component and the existing application, now modelled asaclient, along
with any new clients connect to this new process.

In both server configurations, initialisation of the message exchange server endpoint isthe same. Sub-
sequent to initialisation, the endpoint is then directed to listen on aspecific port for any client connec-
tions.

port = 11111
exchange = netsvc. Exchange(net svc. EXCHANGE_SERVER)
exchange. |l i sten(port)

In the case of a message exchange client, instead of listening for connections, the endpoint is directed
to connect to a message exchange server.

host = "l ocal host"
port = 11111
retry =5

exchange = netsvc. Exchange(net svc. EXCHANGE CLI ENT)
exchange. connect (host, port,retry)

Becauseit is possible that the message exchange server isnot available, aretry delay can be specified.
When supplied thiswill result in successive attempts to connect to the server until aconnectionis es-
tablished. Theretry delay when supplied needs to be specified in seconds.

Note that if a connection to the server islogt, the client will aso attempt to reconnect automatically
after theretry delay time has expired. This hasthe affect that aclient will alwaystry to stay connected
toitsserver without you needing to take any specific action. Y our processwill not be prematurely shut-
down if a connection cannot be established or if aconnection islost.

Service Availability

Unless the service audience of a service agent has been set so as to restrict its visibility, a service will
automatically become visible within connected processes through the service registry of the remote
process. That is, if aparticular serviceislocated within the same process as the message exchange serv-

72

Service Availability

er endpoint and anew client connects, a subscriber to that servicein the client will be notified that the
serviceisavailable. Similarly, any service within aclient will become visible from the server aswell
as other connected clients.

Although the service islocated in a separate process, the same service registry interfaceis used to sub-
scribe to the presence of the service. Subscription to reports produced by the service and the issuing of
requests against that service are also mediated through the same interface as previoudy described. The
only exception to thisisthat the Local Ser vi ce proxy class cannot be used to communicate with
any servicein aremote process, it being restricted to servicesimplemented using Python which appear
in the same process.

Except for the Local Ser vi ce proxy class, that there is no distinction in the interface to communi-
cate between services whether they bein the same or aremote process, meansthat it isa simple matter
to split an application across multiple processes. If a distinct message exchange server processisused,
all that isrequired is that each process embed a message exchange client and connect to the message
exchange server.

As an example, a process supporting a service which publishes periodic reports would be written as
follows.

cl ass Publisher(netsvc. Service):

def __init_ (self):
netsvc. Service. __init__("publisher")
sel f. publ i shReport ("systemctine", netsvc. DateTi me(), -1)
self.startTimer(self.timeout, 10, "heartbeat")

def timeout(self,tag):
sel f. publ i shReport ("systemtime", netsvc. DateTi ne())
self.startTimer(self.timeout, 10, "heartbeat")

di spat cher = netsvc. Di spat cher ()

di spat cher . noni t or (si gnal . SI G NT)

exchange = netsvc. Exchange(net svc. EXCHANGE CLI ENT)
exchange. connect ("1 ocal host", 11111, 5)

di spat cher.run()

The process containing the corresponding subscriber to this service would then be written as follows.

cl ass Subscri ber(netsvc. Service):
def __init_ (self):
netsvc. Service. __init__ (self)
sel f. moni tor Reports(sel f.report, "publisher”,"system*")
def report(self,service, subject,content):
nane = service. servi ceNanme()
identity = service.agentldentity()
publisher = "(%/%)" % (name ,identity)
if subject == "systemctine":
now = str(netsvc. DateTi ne())
print "% becane available at %" % (publisher, now)

73

Message Exchange

print "% originally started at %" % (publisher,str(content))
elif subject == "systemtine":
print "% was still alive at %" % (publisher,str(content))

di spat cher = netsvc. Di spat cher ()

di spat cher . noni t or (si gnal . SI G NT)

exchange = netsvc. Exchange(net svc. EXCHANGE CLI ENT)
exchange. connect ("1 ocal host", 11111, 5)

di spat cher.run()

The only differenceis that a message exchange client has been added to each, the actual services are
identical to what they were when used in the same process.

In regard to announcements of service availability and their subsequent withdrawal, when everything
isin the same process, such an announcements means that the service had been created or destroyed.
In the context of adistributed system, such an announcement means that a serviceisnow visibleor is
no longer visible. Such an announcement doesn’t mean that the service was necessarily destroyed as
it could be the case that the message exchange server process was shutdown. Thus the service could
still exist, it just may not be reachable.

Because services may become unavailable, or connections lost and also because connections between
processes will automatically restart when possible, it isimportant that client servicestake notice of an-
nouncements regarding the availability of aserviceitisusing. A client service should not assume that
aserviceit isusing will always be available and should be programmed to accommodate this fact.

Connection Announcements

Monitoring the existence of services gives precise information about when such servicesbecome avail-
able. Thishowever may be too much fine detail. If a client process needs to merely know when a con-
nection had been established to the message exchange server, it is possible to create a derived version
of the Exchange class and override the "handl eConnect i on() " member function.

This member function will be called when a client has successfully connected to a server, when that
connection is subsequently lost, or when an initial connection attempt fails. On the server side, the
member function is called when a connection is accepted and when it is lost.

cl ass Exchange(netsvc. Exchange):
def __init_ (self,type):

net svc. Exchange. __init__(self,type)
def handl eConnection(sel f, announcenent):
state = "1 NACTI VE"
i f announcenent.state() == netsvc. CONNECTI ON_ACTI VE:
state = "ACTI VE"
process = announcenent.renoteProcess()
address = announcenent.renot eAddr ess()
nessage = "% % (%)" % (state, process, addr ess)

| ogger. notify(netsvc. LOG NOTI CE, nessage)

74

Authorisation of Clients

Overriding this method can be useful purely for logging purposes, but might also be used in a client
processto trigger an announcement to activate the function of the process upon aconnection becoming
active. Consequently, the operation of a client process could be suspended or the process shutdown
when no active connection could be established or the connection lost.

Thislatter mode of operation would be necessary when aretry delay is not specified when connecting
amessage exchange client to a server. In this situation the retry delay defaultsto the value of "- 1",
indicating that one and only one connection attempt should be made. If thisis used, a client should
monitor to see if the connection fails and shutdown the processif it does. Similarly, if it does manage
to connect to the server, when that connection is subsequently lost the process should again be shut-
down.

Note that creation of aone off connection will currently consume resources that cannot be reclaimed.
Thisisalimitation of the Python interface and is not present when using the OSE C++ classlibrary
directly which hasaway of reclaiming the resources. Astheintent isthat the message exchange frame-
work isfor permanent connections, thisis not seen as too problematic at thistime and will only be ad-
dressed at some time in the future.

Authorisation of Clients

Asthe message exchange framework provides direct accessinto an application, it may be desirableto
restrict which hosts can connect in to an application. If thistype of control isrequired, it can beimple-
mented by creating anew derived version of the Exchange classand overriding the member function
"aut hori se() ". For each client connection that a server gets, this member function will be called

with the IP address of the host the client islocated on. A server may then reject or accept the connec-
tion.

cl ass Exchange(netsvc. Exchange):
def __init__ (self,type, hosts=[]):
net svc. Exchange. __init__ (self,type)
self. _allow = hosts
def authorise(self, host):
return host in self._allow

To accept a connection the member function should return a true value and fal se otherwise. When a
connection is rejected, the client will seeit as afailed connection attempt.

Distributed Exchange Server

When an application is distributed across multiple machines, it may not be desirable that processes on
one machine must connect to the message exchange server located on another machine. The problem
hereisthat if the machine hosting the message exchange server is shutdown, none of the processes|o-
cated on remote machines will be able to communicate with each other. In essence thereisasingle
point of failure.

75

Message Exchange

When an application is distributed across multiple machines, it is often the case that even if one ma-
chine were to be shutdown, the processes on a different machine might be able to quite happily keep
operating so long as they could still communicate. To support this, ameans of setting up a distributed
version of the message exchange server is provided.

In this arrangement, each machine hasits own message exchange server, with each message exchange
server connected to all others. If amachineis now shutdown or connections to one machinelost, other
machineswill still be able to communicate with processes on any machineswhich are still accessible.
That is, loss of the message exchange server on one machine will only directly impact that machine.

To setup adistributed exchange server, the message exchange server endpoint is created as before. The
differenceisthat aswell aslistening on aport for new connections, client like connections are created
to the other message exchange servers. The aim hereisto effectively create a star connected network
between the message exchange servers. That is, each message exchange server has aconnection to all
other message exchange servers.

port = 11111
exchange = Exchange(net svc. EXCHANGE SERVER)
exchange. |l i sten(port)

delay = 5
for host in hosts:
exchange. connect (host, port, del ay)

Note that since connections are bidirectional, it is not necessary for each message exchange server to
mutually connect to each other. That is, if you have two message exchange servers, it isonly necessary
for one to connect to the other. In other words, the list of remote hostsin one would be empty, where
asthelist of the remote hostsin the other would be the reciprocal host. If two message exchange serv-
ers do connect to each other, this will be detected and one connection will be ignored, however it
should be avoided.

Multiple Exchange Groups

When creating a service agent, the default service audienceis"* ", indicating that knowledge of the
service should be distributed aswidely as possible. One alternativeisto set the service audience to the
empty string, which will always result in the service only being visible within its own process. What
occurs for other values of the service audience property depends on the exchange group assigned to a
message exchange endpoint.

By default, the exchange group of amessage exchange endpoint isempty, but may be set by an option-
al argument when initialising the class. A message exchange endpoint is only able to be connected to
acomplimentary message exchange endpoint which isamember of the same group. That is, amessage
exchange client endpoint can only connect to a message exchange server endpoint with the same ex-

change group.

76

Multiple Exchange Groups

With respect to service visibility, a message exchange endpoint will only passinformation about serv-
icesif the service audienceis"* ", or if the service audience is the same as the exchange group. The
only exception to thisis when the exchange group is empty. In that case, an empty service audience
will still restrict visibility of aservice to its own process.

By using multiple exchange groups within an application, it becomes possible to segment an applica-
tion into parts and restrict visibility of services to those parts of the applications which need to see
them. Asan example, aservice may act asafront end for multiple back end services which do theredl
work and for which it is not necessary that they be visible.

In this example, the process containing the front end service, as well as creating a message exchange
client endpoint for the default exchange group, would create its own message exchange server end-
point. The default name for this exchange group would be overridden and adifferent port used for con-
nections. Back end processes would then connect to this new port, with all servicesin the back end
processes having a service audience matching that of the new exchange group.

cl ass Front End(netsvc. Service):
def __init__ (sel f, nane="dat abase")
netsvc. Service. __init__ (self, nanme)
sel f.subscri beServi ceG oup(sel f.announce, "backend")
def announce(sel f, bi ndi ng, group, stat us):
i f binding.serviceAudi ence() == "dat abase"
this is one of ours

default = netsvc. Exchange(net svc. EXCHANGE_CLI| ENT)

def aul t. connect ("I ocal host", 11111, 5)

backend = netsvc. Exchange(net svc. EXCHANGE_SERVER, " dat abase")
backend. | i sten(11112)

The front end service would use subscription to a service group to know about the existence of any
back end services. Each of the back end services would in turn add themselves to the same group so
the front end is aware of their existence. The front end service can check the service audience for a
service to know for sure that it is one of its back end services and not an imposter visible through the
default exchange group.

cl ass BackEnd(netsvc. Service):
def __init__ (self,nane="", audi ence="dat abase")
netsvc. Service. __init__(sel f, nane, audi ence)

sel f.j oi nGoup("backend")

backend = netsvc. Exchange(net svc. EXCHANGE_CLI ENT, " dat abase")
backend. connect ("l ocal host", 11112, 5)

Having done this, any services within the back end process will only be visible from other back end
processes and the front end process. The servicesin the back end processwill not be visible within any
process reachable from the front end process over the original message exchange client endpoint at-

77

Message Exchange

tached to the default exchange group. Back end services will still be able to see any services on the
default exchange group which had a service audience of "* .

Note that different exchange groups should not overlap. That is, they should only ever share at most
one process with any other exchange group. In effect, exchange groups when used should form ahier-
archy. The only time that |oops are allowed within the way processes are connected is when creating
adistributed exchange server for a specific exchange group.

Scalability of the Framework

Because there is no dedicated message exchange server process serving as the sole repository of serv-
ice information, the service registry in each process will contain arecord of all servicesit can see. As
the size of an application grows to have very large number of services this may result in the size of
what otherwise should be asmall processto grow unnecessarily.

Currently there are couple of approaches that can be taken to reduce this problem, however, it isrec-
ommended that if you know that you will have very large numbers of services and specifically pub-
lishers and subscribers, that you might be better off purchasing one of the commercial products which
are specifically designed and targeted at such large scal e systems. Such products might not support the
concept of distinct services and instead implement a flat name space for subscriptions, but they are
more likely to scale better.

In other words, the design of the service agent framework and the message exchange framework lends
itself to small to medium size systems. Don’t expect to be able to run the whole of the New Y ork stock
market data feeds through this system as it will more than likely not suit your requirements.

Having made this disclaimer, thefirst things you can do to reduce growth in the size of the servicereg-
istry in each process, isto not export a service beyond the scope of aprocess unlessyou really need to.
That is, if the service only needsto be visiblewithin its own process, setsits service audience to bethe
empty string.

Such a service will not be visible outside of the process and that service will not be able to subscribe
to services outside of the process, but in most cases the service will still be able to make a request
against aremote service. Restricting the visibility of aserviceto itsown processwill also cut down on
traffic between processes relating to the existence and withdrawal of services.

The next thing which can be done is to look more closely at the relationship that exists between serv-
ices. If there are agroup of related services which only need to talk to each, locate them together. This
can be done by putting them in the same process and restricting visibility to that process, or by sepa-
rating them from the remainder of the application by creating a distinct exchange group. In both cases,
have only the services which need to be public actually visible globally.

78

M essage Encoding

As the service agent framework is designed as a distributed system covering multiple programming
languages, it is necessary that any data being passed around within areport, request or response be se-
rialised into aform suitable for transmission as part of amessage. At present the encoded form of the
data uses a subset of XML. That is, it would qualify as being XML, however to make the implemen-
tation easier, the code for decoding such messages will not accept arbitrary XML.

At present the exact form of the XML being usedisnot revealed asthisisbeing reviewed and will most
likely change. Further, the protocol used between message exchange endpoints is unique to this soft-
ware. It too is being reviewed and will most likely be changed to use some more commonly accept
form of handling message boundaries. Any new mechanism will likely aso be designed to be able to
proxy through HTTP servers, thus avoiding issues with closed firewalls.

That the precise details are not being revealed actually makes no difference as it has no bearing in re-
lation to using the software. Thisis because everything is hidden under ahigh level API which hides
such details, thus allowing for change in the formats used without requiring changes to applications
using the software. The only instance where changes might have a visible affect isin respect to the
NET-RPC protocol for RPC over HTTP. Thiswould only be an issueif you tried to write your own
client for this protocol.

The one aspect of how datais encoded which will not changeisin relation to the means of identifying
different types. Here the XML Schema Datatypes 2001 specification is used as a guide, with Python
types being assigned corresponding types with respect to this specification. Through introduction of
customised encoders and decoders, support for user defined scalar data types may however also be
added.

79

Message Encoding

Supported Data Types

Communication between services is mediated through alayer of code which iswritten in C++. The
only exception tothisiswhentheLocal Ser vi ce classisused asaproxy to send arequest to a serv-
icein the same process which is also implemented in Python. This means that except for when the Lo-
cal Ser vi ce classisbeing used, any data which is being transferred between services must go
through a process of being encoded into a serialised form at the point of sending and then deserialised
at the point of reception.

Datawhichis being sent between servicesis not limited to that of just astring. The datato be sent can
consist of any of the basic Python scalar types, alist, atuple or adictionary. In addition to this, the
Python None value may be used, aswell asanumber of extended types. The only limitation in respect
of the Python compound typesisthat when using adictionary, the keys must be of type string. Further,
when atuple appears within any data, the recipient will seeit asalist and not atuple. It isnot possible
to send data which iscyclically self referential.

sel f. publ i shReport ("string", "val ue")
sel f. publishReport("list",[1, 1L, 1.1, None])
sel f. publ i shReport ("dictionary", {"key":"val ue"})

The extended typeswhich are supported are Bool ean, Bi nar y, Dat e, Dat eTi e, Ti e and Du-
r at i on. For the Bool ean type, there are al'so predefined values for Tr ue and Fal se. The

Bool ean type should behave correctly with respect to al truth type tests. If the default argumentsfor
the constructor of Dat e and Dat eTi nme typesareused, they will beinitialised to the current local date
and current local date and time respectively.

sel f. publi shReport ("true", netsvc. True)
sel f. publ i shReport ("fal se, netsvc. Fal se)
sel f. publ i shReport ("bool ean", net svc. Bool ean(1))

sel f. publ i shReport ("bi nary", netsvc. Bi nary("val ue"))

current |local date
sel f. publ i shReport ("date", netsvc. Date())

current local date/tine
sel f. publ i shReport ("dateTi me", net svc. Dat eTi ne())

When using the various date and timetypes, they should beinitialised with string val ues corresponding
to what type they represent. The format and range of these values should be the subset of values pos-
sible under the SO 8601 date/time standard as described by the XML Schema Datatypes 2001 speci-
fication, examples of which areillustrated below.

Type Format Sample

Dat e YYYY-MM-DD 2001-12-25

80

Mapping of Scalar Types

Type Format Sample

Dat eTi me | YYYY-MM-DDThh:mm:ss 2001-12-25T23:59:59
Ti me hh:mm:ss 23:59:59
Dur ati on | PnDTnHNMnS P1DT23H59M59S

For the date and time types, the current Python implementation does not do any checking to determine
if the supplied values are valid, but will pass them asis. Note that the XML Schema Datatypes speci-
fication does allow for atimezone in adate and time, but it isrecommended that al date and time val-
ues be sent as UTC. In the C++ library, only classes corresponding to Dat e and Dat eTi e exist.
Theseare OTC Dat e and OTC _Ti ne. The OTC _Ti ne classis not able to handle timezones.

The only difference betweenthe Bi nar y typeand using astring isthat the value supplied viathe Bi -
nary type, will be encoded internally using "base64" encoding when being passed around. This has
relevance becausein XML most control characters are not permitted in string values. An XML imple-
mentation can also collapsea™\ r\ n" combination to just "\ n". If such characters may appear in a
string, you should use the Bi nar y typeto ensure that they are preserved asis. Note that you do not
however have to encode the string using base64 encoding first as the internal implementation will do
thisfor you automatically.

Mapping of Scalar Types

When datais being serialised, the names attributed to scalar types derive from the XML SchemaDa
tatypes 2001 specification. The only exception to thisisthe None type, which notionaly is passed
around internally with an empty type value. The mapping from Python types to those described in the
XML Schema Datatypes specification is as follows.

Python Type Encodes To XML Type
string xsd: string
i nt xsd:int
| ong xsd: | ong
fl oat xsd: doubl e
net svc. Bool ean xsd: bool ean
net svc. Bi nary xsd: base64Bi nary
net svc. Dat e xsd: dat e
net svc. Dat eTi ne xsd: dat eTi ne

81

Message Encoding

Python Type

Encodes To XML Type

net svc. Ti ne

xsd: ti ne

net svc. Dur ati on

xsd: durati on

If aservice isimplemented using the OSE C++ classlibrary directly, different size versions of the in-
teger and floating point types are available and can be generated in the serialised form of any data. A
consequence of thisisthat when converting any datafrom its serialised form into instances of Python

types, a broader range of possible values types need to be accommodated.

XML Type Decodes to Python Type
xsd: string string
xsd: byt e i nt
xsd: short
xsd:int
xsd: unsi gnedByt e
xsd: unsi gnedShor t
xsd: unsi gnedlI nt
xsd: | ong i nt orl ong asappropri-
xsd: unsi gnedLong ate
xsd: i nt eger,
xsd: fl oat f | oat
xsd: doubl e
xsd: rea
xsd: bool ean net svc. Bool ean
xsd: base64Bi nary net svc. Bi nary
xsd: dat e net svc. Dat e
xsd: dat eTi me net svc. Dat eTi me
xsd:tinme net svc. Ti me
xsd: duration net svc. Durati on

Notethat at the present time, not all of the XML datatypesin respect of non positive and non negative
integers are accommodated. Thesewill most likely be added at sometimein the future, however inthe
short term they don’'t add anything extrain relation to the Python interface. Support for the type

82

User Defined Types

"xsd: hexBi nar y" will also be added at some point in the future aswell. If you wish to send aUni-
code string, you should convert it into astring using UTF-8 encoding.

User Defined Types

The intent with the XML Schema Datatypes specification isthat additional scalar data types can be
introduced by ass gning anew name scoped within adistinct namespace. In respect of thetypesdefined
by this specification, the namespace "xsd" is used. Note that within this implementation, the name-
gpaceisnot linked to a URI containing any form of definition for that type. If sending a data value of
your own type, it is up to your code to ensure that both ends know what the type means.

The ssimplest way of adding your own typesis by using the OQpaque class. When initialised this takes
two values, astring identifying thetype of value and astring representing the value inits encoded form.
It is not necessary to escape any charactersin the encoded value which may be special to XML as such
values will be automatically escaped as necessary.

data = conplex(1,1)
type = "python: conpl ex"
sel f. publ i shReport ("conpl ex", net svc. Opaque(type, data))

Inredity, itisn’t actually necessary to encode a Python conpl ex value in theway shown asa special
mapping is by default installed for this type. For this Python type the namespace "pyt hon" is used.
If defining your own type it is recommended you use some other namespace value which isin some
way specifically associated with your application or some third party standard relating to additional
XML types.

Asaspecia mapping isprovided for the Python conpl ex type, it will be decoded into an instance of
the Python conpl ex typeon reception. If however amapping isnot availablefor aspecified type, the
value will be converted back into an instance of the OQpaque type. The type associated with the value
canthen bequeried using the"t ype" attribute and the actual encoded data using the"dat a" attribute.

def dump(sel f, object):
i f isinstance(object, netsvc. Opaque):
print object.type, object.data

The Opaque class provides ameans of sending a value without a defined mapping, or of you being
ableto receive valuesfor which no mapping is defined. If necessary theinterface of the OQpaque class
can be used to dynamically handle such unknown values and perhaps still make some sense of them.

Adding New Mappings

Mappings for new types can be added at two levels. These are at global scope or such that they only
apply withinthe scope of asingle service. If atype mapping isadded at global scope, you shouldrealise
that such a mapping will be applied to any service. Adding new mappings with global scope should
therefore be carefully considered as it may inadvertently affect the operation of another service.

83

Message Encoding

To add a new mapping at global scope the functions"encoder () " and"decoder () " should be
used to register functions to do the appropriate conversions. When registering the encoder, the first ar-
gument should be either the type object or class object as appropriate. When registering the decoder,
the first argument should be the qualified name you have given the type.

The encoder function which you register should accept a single argument, that being an instance of
your type. The function should return atuple containing the qualified name you have given the type
and the value encoded as a string. The decoder function should accept two arguments, they being the
gualified name you have given the type and the value encoded as a string. The function should return
the corresponding instance of the type as described by the encoded value. If the encoded valueis
invalid, the function should raise an appropriate exception.

def _encode_Conpl ex(object):
return ("python: conpl ex", repr(object))

def _decode_Conpl ex(nane, string):
obj ect = eval (string,{},{})
if type(object) != types. Conpl exType:
rai se TypeError("invalid encoding for conplex type")
return object

net svc. encoder (t ypes. Conpl exType, _encode_Conpl ex)
net svc. decoder (" pyt hon: conpl ex", _decode_Conpl ex)

To define a mapping which applies only within the context of a single service, you need to override
the member functions"encodeObj ect () " and "decodeVal ue() " as appropriate. Note that the
default implementations of these methods will apply any global mappings which are present. If your
version of these functions, don’t identify the type you are interested in, your function should call the
base class version of the function. The arguments to these functions are similar to the globa encoders
and decoders.

cl ass Dat abase(netsvc. Service):

def __init__ (self,nane, **kw):
netsvc. Service. __init__ (sel f, nanme)
#

def encodeObj ect (sel f, object):
i f hasattr(M/SQLdb, "DateTi ne"):
if type(object) == MySQLdb. Dat eTi meType
return ("xsd:string",object.strftine())
elif type(object) == MySQ.db. Dat eTi neDel t aType:
return ("xsd:string",str(object))
return netsvc. Service. encodebj ect (sel f, obj ect)

Providing a mapping which is specific to aservice is most often used when the service interacts with
a Python module which defines its own types for such values as date and time. In this circumstance,

the mapping function can automatically translate an instance of the type into atype appropriatefor the
encoded data. This avoids your own code having to manually trand ate values into corresponding val-

84

Handling Structured Types

uesof the correct type before hand. A service may also override the default decodersfor extended types
such as the date and time types if desired.

Handling Sructured Types

The encoding mechanism for data does not provide away of adding support for your own structured
types, whereby the type of that object can also be transmitted. All objects need to be able to be con-

verted into instances of scalar types, dictionaries, tuplesor lists. To avoid having to do this conversion
manually, it is however possible to define an encoder for a structured type which will do this for you.

At the global level, such afunction is again registered using the "encoder () " function. The differ-
ence between thisfunction and that for scalar types however, isthat instead of returning a string giving
the name of the scalar type, the value None should be returned in its place. The second value in the
tuple should then be the instance of the structured type translated into either ascalar type, dictionary,
tupleor list.

def _encode_UserLi st (object):
return (None, list(object))

net svc. encoder (User Li st. User Li st, _encode_UserLi st)

Having returned the translated value, it will be represented to the encoder. Thusit is only necessary to
translate the top level of the data structure as enclosed values will in turn be trandlated automatically
if required and if an encoder is registered. This mechanism may also be used in an encoder specific to
aservice.

85

Message Encoding

86

Servilet Framework

The HTTP servlet framework can be used to provide awindow into your application. A number of pre-
defined servlets are provided or you can create your own. Y ou can also create your own server objects
to map the servlets to appropriate parts of the URL namespace. Alternatively, a number of predefined
server objects can be used for common tasks such as serving up filesfrom the filesystem, or provision
of RPC over HTTP services. Basic user authentication isimplemented and clients can a so be blocked
based on their address.

The major classesin the OSE C++ class library involved in providing this functionality are the
OTC_Ht t pDaenon, OTC _Htt pServer and OTC_Ht t pSer vl et classes, plusthe various de-
rived servlet and server classes. The implementation of the HTTP servlet framework is based on the
event system and multiple HTTP requests can be handled concurrently.

Although the framework is quite powerful, you should still keep in mind that its main purpose is for
interacting with an application. If you are after ageneral purpose web server, you would probably be
better off using aproduct like Apache. If you need the appearance that the web site and application are
one, usethe"nmod_pr oxy" pluginfor Apache to redirect only a portion of the URL namespace. This
actually has the added benefit that Apache can be used to setup a SSL connection with the client over
any insecure network, with communication between A pache and the application on the secure network
being norma HTTP.

Framework Overview

When aHTTP client makes a connection to the server process, a session manager is created to parse
any requests made by that client. For each request, an attempt is made to find a server object which
manages the part of the URL namespace that the request falls under. This server object is then asked

87

Servlet Framework

to provide a servlet to handle the actual request. If no server object isfound corresponding to that por-
tion of the URL namespace, or the server object is not able to provide a servlet to handle the request,

aHTTP error response is returned to the client indicating that the resource corresponding to the sup-

plied URL could not be found.

Where an appropriate servlet to handle the request is found, the session manager will initially pass of f
to the servlet the details of the request. Thiswill include the type of request, the URL and the contents
of any HTTP headers. The detailsinitially provided to the servlet do not include any content associated
with the request. Any content associated with arequest will subsequently be passed to the servlet asit
arrives. Thiswill only occur though if the servlet wasn't able to process the request based on theinitial
information and does actually require the content.

Inthe majority of cases arequest will not have any associated content and aservlet will be able to proc-
essthe request straight away. Even if there is no content however, the serviet isn’t obligated to send a
response immediately. This may be the situation if the servlet needs to wait until information from an-
other source arrives before it can form the response. In this scenario, the servlet might send a request
using the messaging framework to aremote service to obtain the information. When the response from
the remote service arrives, the servlet can then generate the response.

When the action of the servlet does depend on the content supplied with the request, the servlet would
accumulate the content asit arrives until the amount of content matchesthat given in the content length
header, or until some appropriate boundary isencountered. Now having all the content associated with
the request, the servlet can process the request and send aresponse. Alternatively it could again delay
the response if it needs to first send the content received to some remote service and wait for some re-
sponse.

When a servlet sends aresponse to the HTTP client, as long as the servlet generates a content length
inthe HTTP headers, any request by aHTTP client to keep alive the session will be honoured. This
allowsthe HTTP client to submit additional requests using the same connection if desired. In general
the servlet framework adheresto the HTTP 1.0 protocol.

The HTTP Daemon

The Python class which listens for connection requests from HTTP clientsis called Ht t pDaenon.
When creating the HTTP daemon, you need to tell it which port to listen on and also register with it
any HTTP server objects. When registering aHT TP server object, you need to identify which part of
the URL namespace it manages. Finally, you need to start the daemon so that once the dispatcher is
run it will actualy listen and handle the requests.

di spat cher = netsvc. Di spat cher ()
di spat cher . noni t or (si gnal . SI G NT)

daenon = netsvc. Htt pDaenon(8000)
filesrvr = netsvc. Fil eServer(os. getcwd())
daenon. attach("/",filesrvr)

88

The File Server

daenon. start ()
di spat cher.run()

When aHTTP server object is registered, the first argument to the "at t ach() " member function
should be the path under which resources made available by the HTTP server object are accessible.
Except for the root directory, the path should not include atrailing "/ ". The path should also bein nor-
malised form. That is, it should not include consecutive instancesof "/ " within the path, or include the
path components™. . " or ". ".

If the path isn’t normalised in this respect, these paths will never match against any request as request
URL swill aways be normalised before attempting amatch. The request URL isawaysnormalised to
avoid the possibility of malicious requeststrying to access file type resources outside the available di-
rectory tree.

If desired, asingle HTTP server object may be registered multiple times within the one URL name-
gpace. Registrations may also be done hierachically. That is, oneregistration may nest within the URL
namespace of another. In this situation a request will match against the HTTP server object with the
most deeply nested path.

filesrvrl = netsvc. FileServer(os. path.join(os.getcwd(),"info"))
filesrvr2 = netsvc. FileServer(os. path.join(os.getcwd(),"logs"))
daenon. attach("/",fil esrvr1l)

daenon. attach("/1 ogs",fil esrvr2)

Normally the port which the HTTP daemon is to listen on will be fixed. If you require adynamically
allocated port, you should use "0" as the port number. The actual port number which is allocated can
then be queried using the "por t () " member function. Obviously, this port number would then need
to be displayed somewhere or otherwise accessible so it is known which port to connect to.

daenon = netsvc. H t pDaenon(0)
port = daenon. port()

The File Server

TheFi | eSer ver classisapredefined HTTP server object for serving up filesfrom the file system
inresponseto HTTP GET requests. This server object is suitable for providing access to documenta-
tion related to an application, configuration files or application log files. A plugin mechanism for han-
dling special filetypesis also included

In the case of filesresident in the file system, the server is able to handle any size file, with the corre-
sponding servlet only sending data back to the HTTP client asit is ableto receiveit. That is, transmis-
sion of alarge filewill not blow out the size of the application nor will it cause the application to block
if theclient is low at reading the contents of thefile.

89

Servlet Framework

When an instance of the Fi | eSer ver classis created, it must be supplied with the filesystem direc-
tory from which files are to be served. The server object utilises the Python m nmet ypes module for
determining file types. Thefile type associated with an extension can be overridden, or knowledge of
additional file types can be added using the "map() " member function.

filesrvr = netsvc. Fil eServer("/hone/ httpd")
filesrvr.mp(".py","text/plain")

Notethat it is expected that the HTTP client knows the name of thefileit istrying to access as there
isno builtin support included for directory browsing. It ishowever possible to define the names of one
or more index files to try when arequest identifies a directory as opposed to afile. When more than
oneindex fileis specified, those which were declared | ater, take precedence.

filesrvr.index("index.htni)
filesrvr.index("index.htm")

Editor backup files, temporary files generated by an application, or any other files which should not in
any way be accessible from aHTTP client, can be hidden from view so long asthey have a distinct
extension.

filesrvr.hide(". bak")
filesrvr.hide(".htm ~")

When it comes to the actual task of serving up asingle file from thefile system, the Fi | eSer vi et
classisused. Thisisawrapper around the corresponding servlet class from the OSE C++ classlibrary
used to handle the request for asinglefile. The servlet may be used directly from acustom HTTP serv-
er object.

Client Authorisation

If the HTTP servlet framework isbeing used to provide an administrative interface into an application,
it may be desirable to block access from al but afew selected client hosts. This can be useful where

the application is otherwise intentionally accessible over the Internet, or may inadvertantly become ac-
cessiblefrom abroader range of hosts than intended. This may result from misconfigured firewalls, or
the addition of additional subnets to a corporate network.

If you wish to control who can access the application through the port monitored by the HT TP daemon,
it is necessary to create aderived version of the Ht t pDaenon class and override the"aut hor -

i se() " member function. For each client connection, thismember function will be called with the IP
address of the client host. Y our code can thereby block requests from any undesirable hosts.

cl ass Htt pDaenon(netsvc. Ht t pDaenon) :
def __init__ (self,port,hosts=[]):
netsvc. Htt pDaenon. __init__ (self, port)
self. _allow = hosts
def authorise(self, host):
return host in self._allow

90

User Authorisation

If accessto a particular client is disallowed, the connection will be dropped immediately. The client
will not receive any form of specific HTTP error response indicating why the connection has been
closed. Note that this mechanism blocks a client from accessing any part of the URL namespace for
that HTTP daemon. If you wish to only block client access to specific resources, you would need to
customise each HTTP server object or servlet, or use multiple HTTP daemon objects on separate ports.

User Authorisation

A further level of authorisation beyond that of blocking specific client hostsisto individually authen-
ticate each user. The mechanism for user authentication is performed against the HT TP server objects.
That is, the URL namespace managed by each HT TP server component can be individually protected
using different user databases.

To add user authentication to a particular HTTP server object, you should derive from the class and
overridethe"aut hori se() " member function. If building your own HTTP server object, you could
embed the member function directly in your class.

class Fil eServer(netsvc. Fil eServer):
def _ init_ (self,directory,users={}):
netsvc. Fil eServer.__init__(self,directory)
self. allow = users
def authorise(self,login, password):
return self._allow has_key(login) and \
self. _allow | ogin] == password

If you need to control user access at thelevel of individual URLswithin the URL namespace managed
by aparticular HTTP server object, that functionality would need to be embedded into any servietscre-
ated by that HT TP server object, or managed at the point that the servlets are created by theHT TP serv-
er object. Note that only the HT TP basic authentication mechanism is supported. There is no support
for use of secure sockets and SSL.

HTTP Server Objects

When aHTTP request isreceived, itisaHTTP server object which will dictate the type of HTTP serv-
let created to handle the request. If you wish to implement a customised mapping between request
URLs and the available HT TP servlets, or introduce a new type of HTTP servlet, you will need to de-
fine your own HTTP server object by deriving from the Ht t pSer ver class and overriding the
"ser vl et ()" member function.

class HttpServer(netsvc. HtpServer):
def servlet(self,session):
servl et Path = session. servl etPat h()

if servletPath == "echo":
return netsvc. EchoServl et (sessi on)
elif servlietPath == "notd":

return netsvc. FileServl et(session,"/etc/notd","text/plain")

91

Servlet Framework

return netsvc. Error Servl et (404)

daenon net svc. Ht t pDaenon(8000)
server Ht t pServer ()

daenon. attach("/test", server)
daenon. start ()

Thejob of the"ser vl et () " member function is to create an instance of aHT TP servlet capable of
handling arequest made against aspecific URL. Whenthe"ser vl et () " member function iscalled
itissupplied with the HT TP session object. The session object providesaccessto detailsof the request,
including the server root and servlet path. The server root corresponds to the path under which the
HTTP server object was registered. The servlet path isthe remainder of the path expressed relative to
that server root.

As an example, if the request used the path "/ t est / echo” and the HTTP server object was regis-
teredwiththepath "/ t est ", theserver root would be"/ t est " and the servlet pathwouldbe"echo".
In the case that aHT TP server object isregistered with path "/ ", the server root will still be"/ . This
isthe only case where thetrailing "/ " isn’t removed.

Under normal circumstancesthe HT TP server object would determine the type of HTTP servlet to cre-
ate and the resource being referenced based only on the servlet path. If necessary however, it can query
other information related to arequest. Such acircumstance might beto look for the presence of cookies
used to implement a user session mechanism.

When aHTTP servlet is created, it will need to be passed the handle to the HTTP session object. Al
the predefined HT TP servlets accept this as the first argument when the servlet is created. If you are
defining your own servlets, it is recommended you follow this convention.

If the HTTP server object isn’t able to map arequest to aparticular type of HTTP servlet, the"ser v-
I et ()" member function should return "None", or should indicate a specific type of HTTP error re-
sponseusingtheEr r or Ser vl et class. A HTTPclient can be redirected to adifferent resource using
the Redi r ect Ser vl et class.

The Error Servlet

The error servlet asimplemented by the Er r or Ser vl et classis provided as a quick way for acus-
tom HTTP server object to return aHTTP error response. In addition to the the HT TP session object,
the error servlet needsto be supplied with an approriate HT TP error response code. Text to beincluded
inthe body of the response can also be provided if desired. Such text may include any relevant HTML
markup, but should not include the opening and closing "body" tags.

class HttpServer(netsvc. HtpServer):
def servlet(self,session):
return netsvc. Error Servl et (session, 501, "Not inplenented.")

92

The Redirect Servlet

The Redirect Servlet

The redirect servlet asimplemented by the Redi r ect Ser vl et classwould be used when it is nec-
essary to redirect aHTTP client to an alternate resource. In addition to the HTTP session object, it
should be supplied the URI of the resource to which the HTTP client isto be directed. By default, the
HTTP response code will be"302", indicating the resource has been temporarily moved. This can be
explicitly indicated by using the value "REDI RECT_TEMPORARY". If the resource has been perma-
nently moved, the value "REDI RECT_PERMANENT" can instead be used.

class HttpServer(netsvc. H t pServer):
def servlet(self,session):
url = "http://hostnane/" + session. servletPath()
type = netsvc. REDI RECT_PERMANENT
return netsvc. Redirect Servl et (session,url,type)

If the URI doesn’t start with "/ ", it is assumed to be avalid URI and will be passed asis. If the URI
startswith "/ ", it will assumed to be a absolute URL against the current server host and will be auto-
matically adjusted to include the details of the server host in the URL.

The Echo Servlet

The echo servlet asimplemented by the EchoSer vl et classisuseful for debugging. When used to
serviceaHTTP request, it will generate aHTML document which provides details about the request.

class HttpServer(netsvc. Ht pServer):
def servlet(self,session):
return netsvc. EchoServl et (sessi on)

TheFile Servlet

Thefile servlet asimplemented by the Fi | eSer vl et class, isused to deliver uptoaHTTP client
the contents of afile stored in the operating system’ sfilesystem. Thisisthe same servlet whichisused
internal totheFi | eSer ver class. When this servlet isbeing created it needsto be supplied with the
name of the file and the file type. The latter corresponds to the MIME content type included in the
HTTP response.

If the path suppliedtotheFi | eSer vl et classactually describesadirectory, the servlet will generate
aresponse indicating that accessis forbidden. If you wish to implement directory browsing you will
need to implement a separate HT TP servlet to generate an appropriate response and map the request
toit. If youwant to redirect the request to an index file, your HT TP server should determine if such an
index fileexists and if it does, create the file servlet against it instead.

WhentheFi | eSer vl et classisused, any sizefilecan be handled without the size of the application
growing in size and without the application blocking asaresult of aslow HTTPclient. Thisisachieved
asaresult of the file being sent in blocks, with the servlet waiting if the connection to the HTTP client

93

Servlet Framework

becomes congested. Although the servlet may beforced to wait beforeit can send more data, any other
jobsin the event system will still be serviced, including other HTTP requests.

L ogging of Requests

By default no information is logged about requests. If you wish to log what requests are being made
against your application using the HTTP servlet framework, you need to set the environment variable
"OTCLI B_HTTPLOGCHANNEL" to the name of the log channel to record the information on. The en-
vironment variable needs to be set prior to the first request being received by the application through
any instance of the Ht t pDaenon class.

di spat cher = netsvc. Di spat cher ()
di spat cher . noni t or (si gnal . SI G NT)

net svc. mer geEnvi ron(" OTCLI B_HTTPLOGCHANNEL", " ")

daenon = netsvc. Htt pDaenon(8000)

filesrvr = netsvc. Fil eServer(os.getcwd())
daenon. attach("/",fil esrvr)

daenon. start ()

di spat cher.run()

The format of the logged messages is the same as A pache web server common log file format except

that no matter what version of HTTP is used, the url component of the request is always expanded to
itscompleteform. That is, it will be prefixedwith"ht t p: / / host nane: por t " asappropriate. Nor-
mally thiswould only bethe case if the request originated with a client supporting HTTP/1.1 protocol

and afull url had been supplied by the client.

If you do not want information about requests appearing in the default log file, but want to split out the
logged messagesinto adistinct log file, or otherwise treat them in aspecia way, use ahidden log chan-
nel and create a user defined log channel to capture them.

94

Serviet Objects

To make the most of the HTTP servlet framework it will be necessary to create your own servlets for
interacting with your application. Servlets can be written to handle basic requests against a resource,
or requests where form datais supplied. Special purpose servlets which process arbitrary content as-
sociated with arequest may also be created. Having created a servlet, it can be integrated into an ap-
plication by defining acustom HTTP server object, or by storing it asafile and using a plugin, in
association with the file server object.

Asthe HTTP serviet framework isimplemented on top of an event system and doesn’t rely upon
threads, it is necessary to be mindful of how servlets are implemented to avoid a situation where the
code blocks. If the code does block it will effectively stop the whole application. The event system
should therefore be used as appropriate where concurrency is required. If communication with service
objectsin aremote processis required to obtain data to satisfy a request, this will be essential.

Processing a Request

In order to implement your own HT TP servlet, you need to create a new class which derives from the
Ht t pSer vl et class. If the request your HTTP servlet isto handle does not have any content associ-
ated with it, you will only need to override the "pr ocessRequest () " member function.

The"pr ocessRequest () " member function will be called immediately after the HTTP server ob-
ject hasreturned avalid HTTP servlet. If the HTTP servlet doesn’'t need to process any content asso-
ciated with arequest, it will typically be able to generate a response straight away and the servlet can
then be destroyed.

class HttpServlet(netsvc. HitpServlet):
def processRequest (self):

95

Servlet Objects

if self.requestMethod() !'= "CGET":
sel f. sendError (400)
el se:

sel f. sendResponse(200)

sel f. sendHeader (" Cont ent - Type", "text/ pl ai n")
sel f. endHeader s()

sel f.sendContent ("H there.")

sel f. endCont ent ()

The major member functions of the HTTP servlet class used to interrogate the details of the HTTP re-
guest are"r equest Met hod() ", "request Pat h() " and "quer ySt ri ng() ". It isthese meth-

ods you would use to determine what the HTTP servlet isto do. It may be the case however that it is

only necessary to validate the type of request method. Thiswould occur wherethe HT TP server object
had already identified aresource against which arequest was being made and supplied the handle for

that resource when the HTTP servlet was created.

Having determined the validity or otherwise of arequest, the HT TP servlet can do a number of things.
In the event of an error the HT TP servlet can usethe"sendEr r or () " member function to generate
an error response. The first argument to "sendEr r or () " should be the appropriate HT TP response
code. Anoptional second argument may also be supplied consisting of valid HTML text. Thistext will
be included within the body of the HTML document generated by the"sendEr r or () " member
function.

If the request isvalid, the HTTP servlet might instead generate its own response including any appro-
priate content. To start the responsethe "sendResponse() " member function must be called. The
first argument to "sendResponse() " would typically be be"200", indicating a successful re-
sponse. A HTTP servlet may if it wishes supply any valid HTTP response code here. In fact, the
"sendEr r or () " member functionismerely ashorthand method for generating an error response and
underneath actually uses the same functions as described here.

TheHTTP servlet may now include any HTTP headersby calling "sendHeader () ". Thearguments
to"sendHeader () " should be the name of the header and itsstring value. Whether or not any HTTP
headers are included, the member function "endHeader s() " must now be called.

To include content in aresponse the "sendCont ent () " member function is used. Thismay be
called multipletimes. When all content hasbeen sent, the"endCont ent () " member function should
be called. Calling the "endCont ent () " member function will have the affect of closing off the re-
sponse and oncethe"pr ocessRequest () " member function returns, the servlet will able to be de-
stroyed.

Per sistent Connections

A persistent connection is one whereby the connection to the client can be maintained after aresponse
hasbeen sent. ThisallowsaHTTP client to submit additional requests without the need to create anew

96

Delaying a Response

connection. Negotiation of persistent connections between the HTTP client and server is managed by
using special HTTP request and response headers.

Where possible the session manager will undertake to maintain persistent connections without you
needing to take any special actions. Thisis done as aresult of the session manager inserting on your
behalf the special headers as appropriate when you call the "endHeader s() " member function.

If the client has requested a persistent connection and supplied avalid content length in the request
headers, and you include a valid content length header in the response headers, the session manager
will aim to maintain the connection. If you do not include avalid content length header in the response
headers, or "sendEr r or () " was used to generate a response, the connection will always be shut-
down.

Note that when aHTTP client does send an additional request over the same connection, it will not be
the same HTTP servlet instance that handles the request. Each request received will aways be sepa-
rately parsed, with the appropriate HT TP server object and servlet used each time.

Delaying a Response

The servlet framework isimplemented on top of the event system. Asaresult, it isnot mandatory that
acomplete response be generated by the "pr ocessRequest () " member function. Instead, the
servlet could execute some action which would result in a callback at alater point in time. When that
callback occurs, then it might complete the response.

class HttpServl et(netsvc. HtpServlet, netsvc. Agent):
def __init__ (self,session):
netsvc. HttpServliet. __init_ (self,session)
netsvc. Agent. __init__ (self)
def processRequest (self):
if self.requestMethod() !'= "CGET":
sel f.sendError (400)
el se:
sel f. sendResponse(200)
sel f. sendHeader (" Cont ent - Type", "text/ plain")
sel f. endHeader s()
sel f.start Ti mer (sel f.conpl et eResponse, 10, "ti neout™)
def conpl et eResponse(sel f,tag):
sel f.sendContent ("H there.")
sel f. endCont ent ()

Thisisuseful where the servlet needs to wait until data needed to formulate aresponse is available or
where some form of time dependent server push mechanism is being implemented. Note however that
special steps may be required in these situations to cope with aHTTP client prematurely closing the
connection.

97

Servlet Objects

Destruction of Servlets

The destruction of a servlet can come about as aresult of two situations. Thefirst situation iswhere a
servlet handles a requests and generates a response, whether that be successful or otherwise. The sec-
ond situation iswhere the HTTP client closes the connection before the servlet has sent a complete
response.

The fact that the actions of aservlet may need to be aborted before it has finished complicate the de-

struction of aservlet. Thisisbecause any callback which may have been set up will result in areference
count against the servlet object. The existance of such references will actually prevent the immediate
destruction of the servlet object. If that reference is never deleted, the servlet object may never be de-
stroyed.

All thismeansthat itisn’t sufficient for the servlet framework to deleteits own referenceto aninstance
of aHTTP servlet and expect that it will be destroyed. Instead, it is necessary to introduce a special
member functiontothe Ht t pSer vl et classand require that any derived class extend it as appropri-
ate to cancel any callbacks or otherwise cause external or circular references to the servlet to be del et-
ed.

The name of this member functionis"dest r oySer vl et () ". The member function will be called
when aHTTP client prematurely closes the connection. So that only one mechanism is employed to
ensure aservlet is destroyed, the member function is aso called subsequent to a serviet generating a
complete response.

class HttpServlet(netsvc. HtpServlet, netsvc. Agent):
def __init__ (self,session):
netsvc. HttpServliet. init__ (self,session)
netsvc. Agent. __init__ (self)
def processRequest (self):
if self.requestMethod() !'= "CGET":
sel f.sendError (400)
el se:
sel f. sendResponse(200)
sel f. sendHeader (" Cont ent - Type", "text/ plain")
sel f. endHeader s()
sel f.start Ti mer (sel f.conpl et eResponse, 10, "ti neout™)
def conpl et eResponse(sel f,tag):
sel f.sendContent ("H there.")
sel f. endCont ent ()
def destroyServlet(self):
netsvc. Htt pServl et. destroyServl et (sel f)
net svc. Agent . dest r oyRef erences(sel f)

Thefirst action of the derived version of the member function"dest r oy Ser vl et () " should beto
call the base class version of thefunctionintheHt t pSer vl et class. The member function should
then do what is ever necessary to ensure that references to the servlet are deleted. If the servlet had

98

Processing Content

been derived from the Agent class, thiswould include calling the "dest r oyRef er ences() "
member function.

Processing Content

If thefunction of aHTTP servlet entail sthat the content associated with arequest be processed in some
way, it will be necessary to overridethe"pr ocessCont ent () " member function. The"pr ocess-
Cont ent () " member function will only be called subsequent to "pr ocessRequest () " being
called, and only provided that "pr ocessRequest () " hadn’t already dealt with the request and sent
acomplete response.

As the means to determine how much content to expect is dependent on the specifics of arequest, no
attempt is made to first accumulate the content into one block. Instead, the"pr ocessCont ent () "
member function will be called multipletimesif appropriate, once for each block of datawhichisread
in. Itisuptothe"pr ocessCont ent () " member function to accumulate the data or otherwise proc-
essit, until it determines that all content has been received.

Typically, how much content is expected will be dictated by the presence of a HTTP content length
header, or by aMIM E multipart message boundary string as specificed inaHTTP content type header.
Either way, it is up to the specific implementation of aHT TP servlet to know what to expect and deal
with it appropriately.

cl ass FornServl et(netsvc. HitpServlet):
def processRequest (self):
if self.requestMethod() not in ["CGET","POST"]:
sel f.sendError (501, "Request nethod type is not supported.")
elif self.requestMethod() == "POST" \
and sel f.contentLength() < O:
sel f.sendError (400, "Content | ength required for POST.")
elif self.requestMethod() == "CGET":
self._environ = {}
self. _content =[]
sel f. _contentLength = 0
sel f. _headers = sel f.headers()
sel f. _environ[" REQUEST _METHOD'] = self.request Met hod()
sel f._environ["QUERY_STRING'] = self.queryString()
sel f. _headers["content-type"] =\
"application/x-ww-formurl encoded”
try:
form = cgi.Fi el dSt orage(headers=sel f. _headers, \
environ=sel f. _environ, keep_bl ank_val ues=1)
sel f. processForm(form
except :
net svc. | ogExcepti on()
sel f. shut down()
elif self.contentLength() ==
sel f. processContent("")

99

Servlet Objects

def processContent(self,content):
sel f. _content. append(content)
sel f. _contentLength = self._contentLength + | en(content)
if self._contentLength >= self.contentLength():
sel f. _environ[" REQUEST_METHOD'] = self.request Met hod()
sel f. _content string.join(self. _content,"")
sel f. _content sel f. _content[:self.contentlLength()]
fp = Stringl O Stringl Q(self. _content)
try:
form = cgi.Fi el dSt orage(headers=sel f. _headers, \
envi ron=sel f._environ, keep_bl ank_val ues=1, f p=f p)
sel f. processForm(form
except :
net svc. | ogExcepti on()
sel f. shut down()
def processForn(self,form:
sel f. sendResponse(501)

Member functionswhichaHTTP servlet may find useful hereare"cont ent Lengt h() " and"con-
tent Type()". The"cont ent Lengt h() " member function returns an integer value correspond-
ing to that defined by the HT TP content length header, or "- 1" if no such field was provided. The
"cont ent Type() " member function returns the HTTP content type header. Note that thiswill in-
clude any supplied parameters so you will need to extract these yourself.

A HTTP servlet may aso interrogate arbitrary headers using the member functions"cont ai ns-
Header () "and"header () ". Theserespectively indicate if aheader existsand returnitsvaue. The
name of a header should always be given as alower case string. All headers may be obtained as a Py-
thon dictionary using "header s() ".

If aHTTP servlet encounters an internal error at any time, it may call the "shut down() " member
function to abort all processing of the request. Thiswill cause the connection to the HTTP client to be
closed immediately, discarding any datawhich hadn’t yet been sent. The instance of the HTTP servlet
will then subsequently be destroyed.

The Form Servlet

As processing of form datawill be acommon situation, an implementation of aform servlet is provid-
ed. Thisiscalled For nSer vl et . Theimplementation of thisservlet is similar to the previous exam-
ple except that it does additional processing to trandate data from the types used by the

Fi el dSt or age classinto standard Python lists and dictionaries. The name of the member function
which you need to override to process theform is"handl eRequest () ".

cl ass Logi nServl et (netsvc. FornBervlet):
def handl eRequest (sel f):
if self.containsField("user") and \
sel f. contai nsFi el d("password"):
user = self.field("user")

100

Slow HTTP Clients

password = self.fiel d("password")
if self.authenticateUser(user, password):
sel f. sendResponse(net svc. REDI RECT_TEMPORARY)
sel f. sendHeader (" Locati on", sel f.serverRoot ())
sel f. endHeader s()
sel f. endCont ent ()
el se:
sel f. sendError (400)
el se:
sel f. sendError (400)
def authenticateUser(self, user, password):
...

The existance of afield can be determined by calling the "cont ai nsFi el d() " member function.
The member function”f i el d() " canthen becalledtoretrievethevaluefor thefield. All fieldswhich
have been set can be obtained as adictionary using the "f i el ds() " member function.

Slow HTTP Clients

The HTTP servlet framework does not use multithreading but is layered on top of an event system.
Thisfact meansthat it is not possible for aHTTP servlet to block, as doing so would block the whole
process and stop anything else from running. For this reason, a HT TP servlet does not have direct ac-
cess to the socket connection associated with aHTTP client. Instead, a HTTP servlet in sending data
back to aHTTP client is effectively queueing the data for deliverly.

If the HTTP client is ow in reading data from a socket connection, the server side of the socket con-
nection could effectively block. The underlying framework used to manage a socket connection will
detect this, and will only send data over a socket connection when such a condition would not occur.
A conseguence of the queuing mechanism however isthat any datawill first be added to a queue and
will only be sent after the servlet has returned.

For asmall response thiswould not be aproblem, but if the content associated with aresponseislarge,
the size of the process would grow dramatically if all datais queued at once. To avoid this, it isimpor-
tant that if sending large responses that they be sent in parts. Further, aHTTP servlet should suspend
sending of further datawhen the socket connection would block, asthiswould again only serveto grow
the amount of queued data and thus the size of the process.

To monitor changesin the state of the socket connection, aHT TP servlet should call the member func-
tion "noni t or Congesti on() ", passing a callback function. The callback function supplied will
be called when writing datato a socket connection would effectively block and al so subsequently when
the socket has cleared. These changesin state can be used to suspend and subsequently resume sending
of data

cl ass Test Servl et (netsvc. FornBervlet):
def __init__ (self,session):
netsvc. FornServlet. __init_ (self, session)

101

Servlet Objects

sel f. _batch = None
self. total = None
self. count =0

sel f. _job = netsvc. Job(sel f.generateContent)
def destroyServlet(self):
For nSer vl et . destroyServl et (sel f)
sel f. _job. cancel ()
sel f. _job = None
def handl eRequest (sel f):
if not self.containsField("batch") or \
not self.containsField("total"):
sel f. sendError (400)
el se:
try:
sel f. _batch
sel f. total
except :
sel f.sendError (400)
el se:
sel f. sendResponse(200)
sel f. sendHeader (" Cont ent - Type", "text/ plai n")
sel f. endHeader s()
sel f. moni t or Congesti on(sel f.client Congesti on)
sel f. _job.schedul e(netsvc. | DLE_JOB)
def generateContent(self):
content = []
for i in range(0,self._batch):
self. _count = self. _count + 1
content. append(string.zfill(self._count, 60))
content. append("")
sel f.sendContent (string.join(content,"\n"))
self. total = self. _total - 1
if self. total <= O:
sel f.ignoreCongestion()
sel f. endCont ent ()
el se:
sel f.flushContent ()
sel f. _job.schedul e(netsvc. | DLE_JOB)
def clientCongestion(self, status, pending):
if status == netsvc. CONNECTI ON_CLEARED
sel f. _job.reset ()
sel f. _job.schedul e(netsvc. | DLE_JOB)
elif status == netsvc. CONNECTI ON_BLOCKED:
sel f. _job. cancel ()

int(self.field("batch"))
int(self.field("total"))

WhenaHTTP servlet nolonger wishesto monitor the status of the socket connection the member func-
tion"i gnor eCongesti on() " can be called. Although not absolutely necessary, it is good practice
to always call thisjust prior to calling the member function "endCont ent () " to close off the re-
sponse.

102

Slow HTTP Clients

Note that the Python wrapper around the C++ implementation of the HT TP servlet class performs buff-
ering of content and will only pass content onto the C++ implementation when a set amount has been
exceeded or the end of content has been indicated. If you suspend sending of further data, so that a
HTTP client will see content produced so far, you may wish to flush out any buffered data by calling
the"f | ushCont ent () " member function.

103

Servlet Objects

104

Servlet Plugins

When using afile server object with the HTTP servlet framework, it is possible to associate a special
purpose handler or plugin with requests against files with a particular extension. When arequest is
made against such afile, the plugin isused as an intermediary for the creation of a servlet to handle
that request. The plugin can return a servlet which was loaded into the application at startup, or might
also load the servlet from the file or otherwise generate a servlet on the fly.

This feature means that the functionality of an application can to a degree be extended but without the
need to have such functionality hardwired into the application itself. The functionality of an applica-
tion might even be extended or reduced at run time by the simple act of adding or removing files from
the file system. This eliminates the need to restart an application everytime a change is required.

Python Plugin

To support implementations of HT TP servlets being contained within filesresiding in thefile system,
as opposed to being hardwired into the application itself, the Pyt honPl ugi n classisprovided. This
gives greater flexibility as it would not be necessary to restart the application to add in new function-
ality. The plugin can also detect when a servlet file has been modified and automatically reload it as

necessary.

So that the Python import mechanism can find these files, they should be given a". py" extension.
This mapping is however not built in and it is necessary to register the extension as being associated
with the particular plugin in question.

filesrvr = netsvc. Fil eServer(os. getcwd())
filesrvr.plugin(".py", netsvc. Pyt honPl ugin())

105

Servlet Plugins

The effect of thisregistration will bethat whenever afilewith extension”. py" isrequestedby aHTTP
client, the plugin object will be executed as a callable object, with the HT TP session object and the
name of the file being passed as arguments. In this case, the Pyt honPl ugi n object will import the
fileasif it isaPython module, obtain from it areference to the HTTP servlet and then create an in-
stance of the HTTP servlet to service the request.

The main difference when writing aservlet to be contained in afile and loaded in thisway, as opposed
to one which is hardwired into the actual application, isthat it is necessary to provide a hook for cre-
ating an instance of the servlet. Thisis done by providing a definition within the file of the symbol

" servlet "

i mport netsvc

class HttpServlet(netsvc. HitpServlet):
def processRequest (self):

if self.requestMethod() !'= "CGET":
sel f.sendError (400)
el se:

sel f. sendResponse(200)

sel f. sendHeader (" Cont ent - Type", "text/ plai n")
sel f. endHeader s()

sel f.sendContent ("H there.")

sel f. endCont ent ()

__servlet__ = HttpServlet

Inthesimplest case, thesymbol *__ser vl et __ " canbedefined to beareferenceto the actual servlet
type. The Pyt honPl ugi n object will execute” __ser vl et __" withtheexpectationitisacallable
object, supplying it with a single argument of the HT TP session object. In the above case thiswill im-
mediately result in an instance of the servlet being created.

An alternative might bethat " __ser vl et __" be defined as a function. Thiswould alow one of a
number of servlets to be chosen based on specific criteria, such as the time of day or whether the serv-
ice is operational.

def _ servliet_ ():
return HttpServl et

If aservlet requires additional arguments to be supplied along with the HTTP session object, a proxy
object could instead be defined which transparently supplies the additional arguments. For example, a
servlet designed to facilitate directory browsing might be supplied the name of the directory in which
the servlet file resided, with the servlet generating adirectory listing of files contained in the directory.

cl ass Servl et Proxy:
def _ call__ (self,session):
directory = os.path.dirnane(__file_)
return BrowseServl et (session,directory)

106

Module Caching

__servlet__ = ServletProxy()

Note that an instance of the servlet is created for each request. That is, unlike other smilar systems
available for Python, an instance of a servlet object is not cached and reused. If you need to maintain
state between requests, such information should be factored out into a distinct service agent object.

Module Caching

In the case of the Pyt honPl ugi n object, when the file containing the actual servletisreadin, itis
compiled into Python byte code and cached. This means that a subsequent request against that servlet
will use the cached byte code and will not reread and recompile thefile. So that isisn’t necessary to

stop and start the application if the file is changed, upon each subsequent request a check is made to

seeif the file has since been modified. If the file has been modified, it will be reread and recompiled
ensuring that changes made to the file are visible.

Note that this mechanism will only detect if the actual servlet file has been modified. If that serviet file
importsother modulesusing the Python"i npor t " command and it isthose other modul eswhich have
been changed, the cached servlet will still be used. Thisis acceptable where the other modules contain
core program logic on which other parts of the application are dependent, but not in the case wherethe
separate modul e contains a servlet base class defining the structure of aweb page and it isthe structure
of the web page which you wish to change.

To cater for this situation, a special mechanism is provided for importing of modules which define
servlet base classes or functionality related to the presentation of aweb page. When thismechanismis
used, that the servlet file is dependent on the module is recorded and a servlet file will be reread and
recompiled, as will the module it depends on, when only the module had changed.

i mport os
i mport netsvc

cache = netsvc. Mbdul eCache()
directory = os.path.dirnane(__file_)
_template = cache.inport Mdul e("_tenpl ate", directory)

class HttpServlet(_tenpl ate. PageServl et):
def writeContent(self):
self.witeln("H there.")

__servlet__ = HttpServlet

This means that the structure of a page can be defined in acommon place, with each servlet file only
defining the content specific to that page. The module caching mechanism should however only be
used for this purpose. It is also recommended that for a particular module file, you not mix this mech-
anism and the standard Python import system, but use this system exclusively.

107

Servlet Plugins

Note that a module imported in thisway can use the same mechanism to import further modules with
the dependence on those additional modules also being considered when theinitial fileis requested.
Be aware however, that if files are located on a different machine to that which the application is run-
ning on and the clocks are not sychronised properly, updates may not always be detected correctly.

Writing a Plugin

A plugin can be any callable object, so long as it accepts as arguments when called, aHTTP session
object and the name of afile which isthe target of the request. The plugin may therefore be atype, a
function, or an object which overridesthe”__cal | __" method. Which approach is used will depend
on whether state needs to be preserved between invocations of the plugin. If no state needs to be pre-
served, a smple function may be the most approrpiate.

def factory(session,file):
return netsvc. FileServl et (session,file)

filesrvr.plugin(".txt", factory)

If aHTTP servlet when being constructed takes the same arguments as those passed to the plugin, ie.,
the HTTP session object and the name of afile, the servlet itself might instead be registered as the

plugin.
filesrvr.plugin(".txt", netsvc. FileServlet)

Where state needs to be preserved, registration of an actual object instance which can hold the state,
may be a better approach.

cl ass Pl ugin:
def _ call__ (self,session,file):
return netsvc. FileServl et (session,file)

filesrvr.plugin(".txt", Plugin())
Plugin Aliasing

When aplugin is registered, the filename extension specified must appear in the URL used by the
HTTP client when accessing that resource. This has the perhaps unwanted effect of exposing details
about how the web pages are implemented. This may limit to what extent you can easily change the
implementation later on, but may aso give amalicious user ideas about how they may remotely break
into your system.

For these reasons, although a servlet file might be required to use the extension ". py", if that servlet
file always produces HTML, it may be preferable that that resource always be accessed by using a
". ht M " extension. An ability to do this can aso be useful in the case where aresourceisinitialy
stored asastatic filewitha". ht m " extension, but islater changed to be dynamically generated using

108

Plugin Aliasing

aservlet. Inthislater case, the name of the resource can remain the same, and no references to there-
source need to be changed.

To facilitate use of an alias, an optional argument can be supplied to the "pl ugi n() " member func-
tion defining the alternate extension the resource should be identified with. If you wanted all servlet
files accessible using a particular instance of afile server object to be accessed usinga™. ht m " ex-
tension instead of the". py" extension, the string ". ht ml " would be supplied as the optional third
argument to the "pl ugi n() " member function.

filesrvr.plugin(".py", netsvc. PythonPlugin(),".htm")
filesrvr.hide(".py")

Notethat if the"hi de() " member functionisn’'t also called withthe". py" extension, the servlet file
would till be accessiblewitha”. ht m " extension, but arequest against the ™. py" extension would
yield the actual Python source code. Thiswould not be an issueif the plugin had at the same time also
been registered for ". py" files, but without the alias.

If the". py" fileishidden, if the servlet filewas called "l ogi n. py", it would be accessable as

"l ogi n. ht m ", but an attempt to use "l ogi n. py" would result in aHTTP error response indicat-
ing that the file could not be found. If the". py" fileisn't hidden, but the plugin is registered twice,
once without an alias and once with the aias”. ht m ", both "l ogi n. py" and "l ogi n. ht m "
would work.

If the servlet files are providing the roles of CGlI scripts, it may be desirable for the files to use no ex-
tension at all. That is, the file should be accessed as "l ogi n" instead of "I ogi n. py". If thisisthe
case, rather than". ht m ", an empty string can be provided.

filesrvr.plugin(".py", netsvc. PythonPlugin(),"")

Be awarethat the optional argument to "pl ugi n() " defining the aliasisactually treated asafilename
suffix and not strictly as an extension. What this meansis that that argument need not start with *. ",
but can be any arbitrary string in which the name of aresource ends. Thismeansit is actually possible
to synthesis new resources as long as they derive from an actual file.

One use of thisis a plugin which returns a servlet which generates a thumbnail version of an image.
For example, if animagefilewasoriginally called "hol i day. gi f ", arequest against "hol i day-
t hunbnai | . gi " could me made to generate a thumbnail image on the fly.

def factory(session,file):
return Thunbnail Servl et (session,file)

filesrvr.plugin(".gif",factory,"-thunbnail.gif")

109

Servlet Plugins

110

Remote Access

The service agent and message exchange framework operate based on the concept of processes which
areapart of adistributed application being permanently connected together. This model worksfineon
corporate networks, but is not always practical when run across the Internet. One drawback of this ap-
proach isthat it is often necessary to open up special ports on a corporate firewall to permit access.

For many instances where communication across the Internet is required, a connected model of oper-
ationisn't actually required. Instead, many types of operations can be carried out using arequest/reply
model whereby a connection is only maintained for the lifetime of the request. Thisis precisely the
type of mechanism which isused by HTTP.

Because of the wide acceptance for HT TP anumber of remote procedure call protocols have been de-
veloped which operate within the bounds of aHTTP request. The most well known of these are XML -
RPC and SOAP. Unfortunately, both of these protocols are actually lacking in certain respects and
have not been found to be atotally satisfactory medium.

In place of these protocols, an alternative RPC over HTTP protocol is provided called NET-RPC. At
present, the only client available isimplemented using Python. If you are writing a closed system this
shouldn’t present a problem. In those cases where public access may be required, gatewaysfor XML-
RPC and SOAP are till available, but using them will place alimitation on the type of datawhich you
can pass around.

Note that whichever RPC over HTTP protocol you do decide to use, the code for your servicesisthe
same. In fact, your application may include gateways for all three protocols and a user can use which-
ever typeof client they find easiest. In thisrespect, it doesn’t matter too much which protocol winsout.

111

Remote Access

Evenif anew protocol comesalong, it isarelatively simple matter to incorporate yet another gateway,
again without you having to make modifications to the core of your system.

The RPC Gateway

The gateway which accepts an RPC request is actually an instance of aHTTP server object. The gate-
way will accept arequest and based on the URL determine which service the request appliesto. The
request will then be trandated into acall over the service agent framework, with the corresponding re-
sult being packaged up and returned to the remote client.

Because the service agent framework can operate in a distributed manner using the message exchange
framework, the service which arequest applies to need not even be in the same process as the RPC
gateway. So that aremote client can’t access any arbitrary service however, amechanism is provided
to limit which services are actualy visible. The mechanismsfor client and user authorisation imple-
mented by the HTTP servlet framework can also be used to block access as appropriate.

For the NET-RPC protocol, the RPC gateway isimplemented by the Rpc Gat eway class. When cre-
ated, the gateway needs to be supplied the name of a service group. Only those serviceswhich are a
member of that service group will be accessible through that particular instance of the RPC gateway.
Having created an instance of the RPC gateway, it needs to be mapped into the URL namespace of a
HTTP daemon object.

i mport netsvc
i mport signal

cl ass Validator(netsvc. Service):
def __init__ (self,nane="validator"):
netsvc. Service. __init__ (sel f, name)
sel f.joi nGroup("web-services")
sel f. export Met hod(sel f. echo)
def echo(sel f, *args)
return args

di spat cher = netsvc. Di spat cher ()
di spat cher. noni t or (si gnal . SI G NT)

val idator = Validator()

port = 8000

group = "web-services"

httpd = netsvc. Htt pDaenon(port)
rpcgw = netsvc. RpcGat eway(gr oup)

httpd. attach("/service", rpcgw)
httpd. start ()

di spat cher.run()

112

The Client Application

In this example, any HTTP request made using a URL whose path falls under the base URL of "ht -
tp://1 ocal host: 8000/ servi ce/", will beregarded as being a NET-RPC request. The name
of the servicewhich arequest appliesto isdetermined by removing the base URL component from the
full URL. The full URL used to access the service in this example would thereforebe"ht t p: / / | o-
cal host : 8000/ ser vi ce/ val i dat or ". Note that the service is only visible however, because
it had added itself to the group "web-services', the same group asthe RPC gateway had beeninitialised
with.

The methods of the service which are available are the same as those which would be accessible over
the service agent framework internal to your application. That is, a service must export amethod for it
to be accessible. The only such method available in this example would be "echo() .

The Client Application

Client side access to the NET-RPC protocol is available through the Python "net r pc" module. This
module is not dependent on the "net svc" module and is pure Python. The name of the class used to
make arequest to aremote serviceisRenot eSer vi ce. Thisclassbehavesin asimilar fashionto the
Local Ser vi ce classfromthe"net svc" module except that the service name is replaced with the
URL identifying the remote service.

i mport netrpc

url = "http://1ocal host: 8000/ service/validator"
service = netrpc. RenoteService(url)
print service.echo(1,1L,1.1,"1")

Only the "http" protocol is supported. If the URL specifies an unsupported protocol, the exception Ad-
dressl nval i d will beraised. If the URL didn’t identify avalid service on the remote host, a
Ser vi ceUnavai | abl e exception israised. Other possible exceptions which may be raised are
Aut hent i cati onFai | ureandTr ansport Fai | ur e. All themorespecific exceptionsactually
derive from Ser vi ceFai | ur e and the Ser vi ceFai | ur e exception is also used for errors gen-
erated by the serviceitself, so it is often sufficient to watch out for just that type of exception.

Restricting Client Access

In addition to being able to dictate precisely which services are visible, it is also possible to restrict
access to specific clients. This can be done by allowing only certain hosts access, or by limiting access
to specific individuals by using user authentication. Both schemes rely on features within the existing
HTTP servlet framework.

cl ass Htt pDaenon(netsvc. Ht t pDaenon) :
def _ init_ (self,port,hosts=["127.0.0.1"]):
netsvc. Htt pDaenon. __init__ (self, port)
self. _allow = hosts
def authorise(self, host):

113

Remote Access

return host in self._allow

cl ass RpcGat eway(het svc. RpcGat eway) :
def __init__ (self,group, users=None):
net svc. RpcGateway. _init__ (self, group):
self. allow = users
def authorise(self,login, password):

return self. _allow == None or \
(sel f._all ow has_key(login) and \
self._allowf | ogin] == password)
users = { "adnin": "secret" }
port = 8000
group = "web-services"
httpd = Htt pDaenon(port)
rpcgw = RpcGat eway(group, users)

httpd. attach("/service", rpcgw)
httpd. start ()

When user authentication is being used, the login and password of the user can be supplied as addi-
tional argumentsto the Renot eSer vi ce classwhen it is created.

url = "http://1ocal host: 8000/ service/validator"
service = netrpc. RenoteService(url,"adm n", "secret")
print service.echo(1,1L,1.1,"1")

If alogin and password aren’t supplied when required, or the details are wrong, the Aut hent i ca-
t i onFai | ur e exception will be raised.

Duplicate Services

Because a URL identifies a unique resource, a conflict arises due to the fact that within the service
agent framework it is possible to create multiple services with the same name. What happens in this
circumstance is that the RPC gateway will remember which service agent was thefirst it saw in the
required service group, having a particular service name. While that particular service agent exists, it
will always use that service agent as the target of requests.

When there are multiple service agents with the same service name and the first one seen by the RPC
gateway is destroyed, the RPC gateway will then fall back to using the second oneit saw. That is, the
RPC gateway will always use the service agent which it hasknown about thelongest. Ingeneral, if you
intend to make services accessible using the RPC gateway, it is recommended that you always use
unique service names within the service group dictating which services are actually visible.

114

User Defined Types

User Defined Types

The NET-RPC protocol supportsall thetypes supported by the service agent framework, aswell asthe
concept of user defined scalar types. That is, if a service responds with data incorporating additional
scalar types, they will by default be passed back as instances of the Opaque type, wherethe "t ype"
attribute gives the name of the type and the "dat a" attribute the encoded value. Similarly, new types
may be sent by initialising an instance of the OQpaque type with the name of the type and the valuein
its encoded form.

url = "http://1ocal host: 8000/ service/validator"
service = netrpc. RenoteService(url,"adm n", "secret")

followi ng are equival ent

val ue = conpl ex(1, 1)

print service.echo(val ue)

print service.echo(netrpc. Opaque("python: conpl ex", repr(val ue)))

Encoders and decoders for additional user defined scalar types can be provided by registering the ap-
propriatefunctionsusingthe"encoder () "and"decoder () " functionsavailableinthe"net r pc"
module. The functions for registering the encoder and decoder functions are used in exactly the same
was asthoseinthe"net svc" module. In fact, they are the same functions as the "net svc" module
imports them from the "net r pc" module, as it does for the implementations of all of the extended

types.

Asisthe case in the service agent framework, you need to be mindful about the effect of registering
arbitrary encoders and decoders at global scope, especially if your client application makes calls
againgt different servicesimplementing their own scalar types. This becomes even more of anissueif
the"net r pc" module isused to make client side calls from inside a server side application using the
"net svc" module. Thisis because they will share the same global encoders and decoders.

If you need to support types which are specific to aservice being called, rather than registering the en-
coder and decoder function at global scope, the safer way isto supply your own functions just for that
service. Thisisdone by supplying the function using a keyword argument when initialising the in-
stance of the Renot eSer vi ce class. The keyword argument for the encoder functionis"encode”
and that for the decoder functionis"decode". The functionsyou supply should call the corresponding
global function if it doesn’t know what to do with a specific type.

def encodeObj ect (obj ect):
if type(object) == MySQLdb. Dat eTi meType
return ("xsd:string",object.strftine())
elif type(object) == MySQLdb. Dat eTi neDel t aType:
return ("xsd:string",str(object))
return netsvc. encodeCbj ect (obj ect)

url = "http://1ocal host: 8000/ service/validator"
service = netrpc. Renot eServi ce(url, encode=encodeOhj ect)

115

Remote Access

Managing User Sessions

A common practice with web based servicesisto have arequest initiate a unique session for a user.
Having opened the session, any requests will then be identified with that session, with information re-
garding the session potentially being cached on the server side until the session is closed. Such a ses-
sion might also be used as away of allocating aserver sideresourceto that user, or creating adatabase
cursor dedicated to a particular user so more complex queries can be made.

A scheme suitable for use over the service agent framework was previously described, however that
implementation was based on the ability to subscribe to the existence of the owner of the session, with
the session being automatically closed when the owner was destroyed. When the RPC gateway is used,
this approach can’t be used, as the sender of the request will be atransient service created by the RPC
gateway to servicejust that request. An alternative when the RPC gateway is being used is to automat-
icaly close the session after a set period of inactivity.

cl ass Dat abase(netsvc. Service):
def __init__ (self, nane="dat abase", **kw) :
netsvc. Service. __init__ (sel f, nanme)
sel f. _name = nane
sel f.j oi nGroup("dat abase-servi ces")
sel f. _database = MySQLdb. connect (**kw)
self. cursors =0
sel f. export Met hod(sel f.cursor)
def executeMethod(sel f, name, net hod, par ans):
try:
return netsvc. Servi ce. execut eMet hod(sel f, name, met hod, par ans)
except MySQ.db. Progranmm ngError, exception
sel f. abort Response(1, "Progranm ng Error","db", str(exception))
except MySQLdb. Error, (error, description):
sel f. abort Response(error, description, "nysql")
def cursor(self,timeout=60):
self. cursors = self. cursors + 1
nanme = "%/ %" % (sel f. _nane, sel f. _cursors)
cursor = self._database. cursor ()
Cur sor (nane, cursor, ti meout)
child = "%" %self. cursors
return child

Theideaisthat when arequest ismade, auniqueinstance of aserviceis created specific to the session,
with a name which is then passed back to the remote client. In the example shown, if the service was
originally accessibleusingthe URL "ht t p: / /| ocal host / dat abase", theinstance of aservice
created for that specific session would be the same URL but with the session id appended, separated
by"/". Eg., "http://1 ocal host/ dat abase/ 1". Obviously, asession id which could not be
easily guessed should however be used.

The client would now direct al future requeststo the new URL. When the client has finished with the
serviceit would call the"cl ose() " method on the service. If for some reason the client did not ex-

116

Managing User Sessions

plicitly close off the session, it would be automatically closed after aperiod of 60 seconds of inactivity,
or whatever period was defined when the session was initiated. An implementation of the database cur-
sor service for this example might be as follows.

cl ass Cursor(netsvc. Service):
def __init__ (self,nane,cursor,tinmeout):
netsvc. Service. __init__ (self, nanme)
sel f.j oi nGroup("dat abase-servi ces")
sel f. _cursor = cursor
sel f. _timeout = tinmeout
self. restart()
sel f. export Met hod(sel f. execute)
sel f. export Met hod(sel f. execut emany)
sel f. export Met hod(sel f. descri ption)
sel f. export Met hod(sel f.rowount)
sel f. export Met hod(sel f.fetchone)
sel f. export Met hod(sel f. fetchmany)
sel f. export Met hod(sel f.fetchall)
sel f. export Met hod(sel f. arraysi ze)
sel f. export Met hod(sel f. cl ose)
def encodeObj ect (sel f, obj ect):
i f hasattr(M/SQLdb, "DateTi ne"):
if type(object) == MySQLdb. Dat eTi meType
return ("xsd:string",object.strftine())
elif type(object) == MySQ.db. Dat eTi neDel t aType:
return ("xsd:string",str(object))
return netsvc. Service. encodebj ect (sel f, obj ect)
def executeMethod(sel f, name, net hod, par ans):
try:
return netsvc. Service. execut eMet hod(sel f, name, net hod, par ans)
except MySQ.db. Progranmm ngError, exception
sel f. abort Response(1, "Progranm ng Error","db", str(exception))
except MySQLdb. Error, (error, description):
sel f. abort Response(error, description, "nysqgl")
def _restart(self):
sel f.cancel Timer("idl e")
self.startTimer(self. _expire,self. tinmeout,"idle")
def _expire(self, nanme):
if nane == "idle":
sel f.cl ose()
def execute(sel f, query, args=None):
result = self. _cursor.execute(query, args)
self. restart()
return result

addi tional nethods

def cl ose(self):
sel f. _cursor.close()

117

Remote Access

sel f.cancel Tinmer("idle")
sel f. destroyRef erences()
return O

Using the"net r pc" module to access the service, a client might be coded as follows. In this case a
separate cursor is created in relation to the queries made about each table in the database.

i mport netrpc

url = "http://1ocal host: 8000/ dat abase"
service = netrpc. RenoteService(url)

tabl es = service. execute("show tabl es")
ti nout = 30

for entry in tables:
table = entry[0]

print "table: " + table
nane = service. cursor (30)
print "cursor: " + url + "/" + nane

cursor = netrpc. RenoteService(url+"/"+name)
cursor.execute("select * from"+table)
desc = cursor.description()

print "desc: " + str(desc)
data = cursor.fetchall ()
print "data: " + str(data)

cursor.close()

In general, giving open access to a database in this way may not be advisable, especialy over the In-
ternet. Such a mechanism might be restricted to a corporate intranet. Alternatively, custom interfaces
should be layered on top of the database providing interfaces based on functional requirements.

The XML-RPC Gateway

If the Python NET-RPC client implementation can’t be used because of the need to use adifferent lan-
guage for the client, you might instead consider using the XML-RPC protocol. Clients for the XML-
RPC protocol are available in many different languages, many of which are listed at "http://www.xm-
Irpc.com”. The only change to your server application will be to instantiate an instance of the XML-
RPC gateway instead of the NET-RPC gateway.

i mport netsvc
i mport netsvc.xmrpc

di spat cher = netsvc. Di spat cher ()
di spat cher. noni t or (si gnal . SI G NT)

val idator = Validator()

118

http://www.xmlrpc.com
http://www.xmlrpc.com

The XML-RPC Gateway

port = 8000

group = "web-services"

httpd = netsvc. Htt pDaenon(port)

rpcgw = netsvc. xm r pc. RpcGat eway(gr oup)
httpd. attach("/service", rpcgw)

httpd. start ()

di spat cher.run()

If you do decideto rely upon the XML-RPC protocol instead of the NET-RPC protocol, you will be
constrained as to what types you can use. Thisis because the XM L-RPC protocol has a more limited
set of coretypes and is not type extendable asis the NET-RPC protocol. One major deficiency of the
XML-RPC protocol, isthat it has no way of passing a null value, such as that implemented by the Py-
thon None type. Some XML-RPC clients have been extended to support anull value, but this gateway
does not implement such an extension.

A further complication which can arisein using XML-RPC isthat the specification isn’t precisein cer-
tain areas. Although an XML-RPC messageis notionally XML, the specification indicates use of AS-
Cll valuesin stringsonly. Thisisin conflict with XML which requires at least UTF-8. Another issue
isthat the XML -RPC specification mentions nothing about needing to support XML comments, CDA-
TA or various other XML constructs. This has lead to some implementations of the protocol not sup-
porting such features of XML and others relying on them.

Because of theinter operability issues which may arise due to the differences between different XML-
RPC clients, anumber of different XML-RPC protocol implementations are actually supported by the
XML-RPC gateway. By default a pure Python implementation of routines for decoding and encoding
XML-RPC messagesisused. Thisimplementation usesafull XML parser and should be ableto handle
anything XML dictates.

In general, when only small amounts of dataisbeing passed back and forth, most of the cost of aremote
procedure call isactually consumed inthe costs of starting up and ripping down the TCP/I P connection
by the client and of the server responding to the connection request. That the XML-RPC encoding and
decoding routinesareimplemented in Python may not therefore have any significant impact. However,
when large amounts of data are being passed around, this may not be the case.

An aternative to the Python implementation is one implemented in C++. Thisimplementation will be
quicker at decoding XML-RPC messages, but does not use afull XML parser and thus will not work
if XML constructs such as commentsand CDATA are used. The implementation also may not always
handle out of order elementsin the method call and struct elements. The C++ implementation if desired
can be selected by supplying a keyword argument when initialising the XML-RPC gateway.

Default uses Python inplenmentation
rpcgwl = netsvc. xm rpc. RpcGat eway(group)

Use C++ inplenmentation instead.
rpcgw2 = netsvc. xm rpc. RpcGat eway(gr oup, vari ant ="c++")

119

Remote Access

Explicitly specify use of Python inplenmentation
rpcgw3 = netsvc. xm rpc. RpcGat eway(gr oup, vari ant =" pyt hon")

Both these Python and C++ implementations of the routines for handling the XML-RPC protocol are
supplied with OSE. Because of the limitations of the XML-RPC protocol in respect of passing amore
diverse set of types, when these implementations are used, types which don’t have a direct equivalent
in XML-RPC will have their encoded value passed as a string, with a subsequent loss of type informa-
tion.

For example, the Python None typewill be sent as an empty string. Note this only appliesto the result
of arequest when it isbeing returned viaan XML-RPC request. Since XML-RPC doesn’t support the
extratypes, aclient strictly conforming to the XML-RPC protocol would not have been able to gener-
ate them in the first place.

Although there are numerous third party XML-RPC clientsavailable, including a number for Python,
an XML-RPC client isalso provided with OSE. This client isinterface compatible with that provided
by the"net r pc" moduleandisavailableinthe"net r pc. xm r pc" module. This provides exactly
the same interface asthe "net r pc" module, even to the extent of being able to reconstruct the more
informative failure responses provided by the service agent framework.

i mport netrpc.xmrpc

url = "http://1ocal host: 8000/ service/validator"
service = netrpc.xm rpc. Renot eService(url)
print service.echo(1,1L,1.1,"1")

What happens when afailure occursis that the additional information provided by the service agent
framework is encoded into the description field of an XML-RPC fault. When thisis received by the
"xm r pc" module it extracts out the information into separate fields once more. If you are using a
third party XML-RPC client thiswill not occur. What you will find instead is that the fault code will
equateto the error code of afailure, with the description included with thefault looking something like
the following.

origin -- the description
additional fault details

That is, thedescription is prefixed by theorigin of thefailure, separated by "- - . The additional details
of thefailure will then appear separated from the description by ablank line. Y ou could either use this
asis, or separate out the information yourself.

Note that when using the"xm r pc" module the encoders and decoders become largely irrelevant giv-
en that the XML-RPC protocol is not type extendable. Although the "xm r pc™ module provides an
interface compatible with the "net r pc" module, it still may be used to make requests against third
party XML-RPC servers.

120

The SOAP Gateway

The SOAP Gateway

Y et another dternativeto XML-RPC isthe SOAP protocol. A starting point for SOAP isthe site "http:/
Iwww.devel op.com/soap”. Although SOAP is newer than XML-RPC and is notionally type extenda-
ble, it actually has some more significant limitations than XML-RPC. Aswith XML-RPC, itisonly
recommended that you use this protocol in preference to the NET-RPC protocol if you really have to.
In doing so you will need to write your code keeping in mind these limitations.

The biggest limitation of the SOAP protocol at present is that the specification uses XML element
names to describe the member keysin structures. At present, using the default SOAP encoding such
structures are the only way of representing a Python dictionary. The service agent framework already
restricts keysin dictionaries to strings, but the SOAP protocol limits what values those keys can have
because of the XML naming rules.

More specifically, XML saysthat an el ement name, and thus akey in a Python dictionary, cannot start
with a number. Further to this, akey would not be able to contain white space, awhole host of punc-
tuation characters, nor would akey be able to start with the string "xm " in any mix of upper or lower
case. It isalso not possible to represent an empty dictionary in SOAP. These amount to being quite a
severe restriction and effectively means that dictionaries need to be converted into alist of key/value
tuplesin order to be sent correctly.

The Apache SOAP toolkit has defined an alternative compound type which would be suitable for rep-
resenting a dictionary, but only afew SOAP toolkits actually support it. It is aso questionable as to
whether a SOAP client would i nterchangeabl e accept this new typein any place where astructure may
appear. Inevitably, Microsoft and IBM will come up with yet another scheme for doing the samething,
S0 any consensusis likely to be long in coming.

At present the default SOAP gateway relies on athird party "ZSI" module from the "pywebsvcs”
toolkit. To use the SOAP gateway, you will need to have separately obtained this third party module
from "http://sourceforge.net/projects/pywebsvcs’ and installed it. Y ou must have version 1.2 RC2 or
later of this package. It is not possibleto useversion 1.1 or earlier of this package because of bugsin
the package.

If you still wish to use the SOAP gateway, the only real change you would need to make to your code
would beto instantiate an instance of the SOAP gateway in place of the NET-RPC gateway. Obviously
though, if your service produces datawhich doesn'’t fit within the limitations of the SOAP protocol the
gateway will generate XML which a client will not be able to parse.

i mport netsvc
i mport netsvc. soap

di spat cher = netsvc. Di spat cher ()
di spat cher . noni t or (si gnal . SI G NT)

val idator = Validator()

121

http://www.develop.com/soap
http://www.develop.com/soap
http://sourceforge.net/projects/pywebsvcs

Remote Access

port = 8000

group "web- servi ces"

ht t pd net svc. Ht t pDaenon(port)
rpcgw = netsvc. soap. RpcGat eway(gr oup)
httpd. attach("/service", rpcgw)

httpd. start ()

di spat cher.run()

To complement the SOAP gateway, a SOAP client isprovidedinthe"net r pc. soap” module. This
client isonly suitable for use against SOAP based web services which rely on positional arguments.
Most web services use WSDL and therefore require named parameters, making the client unsuitable
in those cases.

i mport netrpc.soap

url = "http://1ocal host: 8000/ service/validator"
service = netrpc. soap. Renot eServi ce(url)
print service.echo(1,1L,1.1,"1")

If using this client against a SOAP server written using adifferent system, it may be necessary to bind
the method call to aspecific namespace and/or provide aspecific valuefor the"SOAPAct i on" header
of the SOAP request. If thisisthe case, a method namespace can be supplied using the"ns" keyword
argument when creating the instance of the Renot eSer vi ce class. Similarly, avaluefor the " SQA-

PAct i on" header can be supplied using the "soapact i on" keyword argument. If no "soapac-

t i on" argument is supplied, the value of the "SQAPAct i on" header will be a pair of double quotes.

ur "http://services. soaplite.conl hibye.cgi"
uri "http://ww. soaplite.conl Denp"

service = netrpc. soap. RenoteServi ce(url,ns=uri)
print service. hi()

If aparticular SOAP server requires adifferent method namespace or "SQAPAct | on™ header for each
method called, the"'ns" and"soapact i on" keyword arguments can instead be supplied at the point
the call is made, rather than when the Renot eSer vi ce object is created.

Note that although SOA P istype extendabl e, because the namespace associated with a new type name
must be bound to a URI, the lesser described type information used by the service agent framework
can’'t be transparently trandated into valid XML as per the SOAP encoding rules. You are therefore
limited to types described by the XML Schema Datatypes specification, although at present not all
such types may be trandated by the SOAP gateway. In the future as experience and demand dictates,
the gateway will be amended however to ensure that any typesfrom the XML Schema Datatypes are
passed through appropriately.

In respect of afailure response generated by the service agent framework, the four fields will be en-
coded as separate fields within the SOAP fault structure detail element enclosed with an XML element

122

Using Multiple Gateways

caled"Ser vi ceFai | ur e". All elementswill be qualified in the OSE namespace. | nadequate prior
art has been found as to the most appropriate way to make use of the detail element, so it may be nec-
essary to change thisin the future if necessary.

Using Multiple Gateways

Because it is possible to attach multiple HTTP server objectsto a particular instance of aHTTP dae-
mon object, you aren’t restricted to having only one instance of an RPC gateway. The first conse-
guence of thisfact isthat for which ever protocol you intend to use, multiple RPC gateways can be
created which map to distinct parts of the URL namespace.

Such RPC gateways can and would generally be associated with different groups of services. It is pos-
sible that some of the RPC gateways might be protected using user authentication. At the same time,
aHTTPfile server object or custom HTTP server object might also be attached to the same HTTP dae-
mon.

files = netsvc. Fil eServer (os. getcwd())
httpd. attach("/downl oad", fil es)

user = netsvc. RpcGat eway("web-services")
httpd. attach("/service", user)

adm n = netsvc. RpcGat eway("adm n-servi ces")
httpd. attach("/adm n", adm n)

When creating RPC gateways, you also aren't restricted to them all being for the same protocol. As
long asthey are hosted under different parts of the URL namespace, gateways for all three of the RPC
over HTTP protocols currently supported could be provided against the same set of services. In doing
this, aslong as your service fits within the lowest common denominator with respect to the limitations
of the XML-RPC and SOAP protocols, you could leaveit up to the user asto which protocol they want
to use.

netrpcgw = netsvc. RpcGat eway("web- servi ces")
httpd. attach("/ netrpc", netrpcgw)

xm rpcgw = netsvc. xm rpc. RpcGat eway (" web- servi ces")
httpd. attach("/xm rpc", xm r pcgw)

soapgw = netsvc. soap. RpcGat eway (" web- servi ces")
httpd. attach("/soap", soapgw)

Using the variousfeatures of the HTTP servlet framework, adiverse set of interfaces could be present-
ed through the same HT TP daemon. In general though, itisrecommended that afull blown HTTP serv-
er such as Apache still be used for performing as much of the web serving capabilities as possible.

A suitable model may be to use PHP or PSP on your main web server and have it make requests into
the back end application using one of the RPC over HTTP protocols as necessary. This has the benefit

123

Remote Access

of also pushing alot of the security issues onto the main web server where they are more often than
not easier to manage and deal with. If it was necessary to expose some part of the application direct to
outside users, one approach might be to make use of the Apache "nod_pr oxy" module rather than
directly exposing the application.

124

	Table of Contents
	Manual Overview
	Python Modules
	Module Descriptions
	Installation and Setup
	Additional Information

	Logging Facility
	Logging a Message
	Specifying a Log File
	Specifying a Log Channel
	Logging Python Exceptions
	Exceptions in a Callback

	Program Setup
	Configuration Database
	Configuration File
	Naming Hierarchies
	Environment Variables
	Unique Identifiers
	Process Identity

	Event Framework
	Scheduling a Job
	Real Time Events
	Destroying Agents
	Alarms and Timers
	Recurring Actions
	Socket Events
	Program Signals
	Program Shutdown

	Service Agents
	Service Naming
	Service Audience
	Anonymous Service
	Service Groups
	Service Registry
	Service Announcements
	Group Announcements
	Service Lookup

	Service Reports
	Publishing Reports
	Monitoring Reports
	Lifetime of Reports
	Identity of Subscribers
	Existence of Publishers

	Service Requests
	Sending a Request
	Handling a Response
	Identifying a Response
	Detecting a Failure
	Lack of Response
	Servicing a Request
	Generating a Failure
	Delaying a Response
	Identity of the Sender
	Invalid Request Method
	Local Service Requests

	Message Exchange
	Exchange Initialisation
	Service Availability
	Connection Announcements
	Authorisation of Clients
	Distributed Exchange Server
	Multiple Exchange Groups
	Scalability of the Framework

	Message Encoding
	Supported Data Types
	Mapping of Scalar Types
	User Defined Types
	Adding New Mappings
	Handling Structured Types

	Servlet Framework
	Framework Overview
	The HTTP Daemon
	The File Server
	Client Authorisation
	User Authorisation
	HTTP Server Objects
	The Error Servlet
	The Redirect Servlet
	The Echo Servlet
	The File Servlet
	Logging of Requests

	Servlet Objects
	Processing a Request
	Persistent Connections
	Delaying a Response
	Destruction of Servlets
	Processing Content
	The Form Servlet
	Slow HTTP Clients

	Servlet Plugins
	Python Plugin
	Module Caching
	Writing a Plugin
	Plugin Aliasing

	Remote Access
	The RPC Gateway
	The Client Application
	Restricting Client Access
	Duplicate Services
	User Defined Types
	Managing User Sessions
	The XML-RPC Gateway
	The SOAP Gateway
	Using Multiple Gateways

